
Generating Natural Language Texts from
Business Process Models

Henrik Leopold1, Jan Mendling2, and Artem Polyvyanyy3

1 Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
henrik.leopold@wiwi.hu-berlin.de

2 WU Vienna, Augasse 2-6, A-1090 Vienna, Austria
jan.mendling@wu.ac.at

3 Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
artem.polyvyanyy@hpi.uni-potsdam.de

Abstract. Process Modeling is a widely used concept for understanding,
documenting and also redesigning the operations of organizations. The
validation and usage of process models is however affected by the fact
that only business analysts fully understand them in detail. This is in
particular a problem because they are typically not domain experts. In
this paper, we investigate in how far the concept of verbalization can
be adapted from object-role modeling to process models. To this end,
we define an approach which automatically transforms BPMN process
models into natural language texts and combines different techniques from
linguistics and graph decomposition in a flexible and accurate manner.
The evaluation of the technique is based on a prototypical implementation
and involves a test set of 53 BPMN process models showing that natural
language texts can be generated in a reliable fashion.

Keywords: Natural Language Generation, Verbalization, Business Pro-
cess Models

1 Introduction

Business process modeling is nowadays an integral part of information systems
engineering and of organizational design. Many organizations document their
operations in an extensive way, often involving several dozen modelers and
resulting in thousands of business process models [1]. The audience of these
models is even bigger, ranging from well-trained system analysts and developers
to casual staff members who are unexperienced in terms of modeling. Most of
the latter lack confidence to interpret visual process diagrams. Clearly, there is a
divide between the persons with modeling expertise and those without.

This problem of diverging skills is reflected by modeling methods which
explicitly distinguish between modeling experts and domain experts. In this
setting, system analysts have to formalize facts about a specific domain with
which they are often not familiar. Domain experts have to provide details about
this domain although they do not fully understand the models the analysts create.

mailto:henrik.leopold@wiwi.hu-berlin.de
mailto:jan.mendling@wu.ac.at
mailto:artem.polyvyanyy@hpi.uni-potsdam.de

Therefore, the validation of the models has to rely on a discourse in natural
language. For data modeling, this concept is supported by Object-Role Modeling
(ORM) and its predecessor NIAM [2,3]. A key feature of ORM is a direct mapping
from models to natural language text called verbalization. This verbalization
capability has been emphasized as a crucial advantage for the validation of models
in a discourse between system analyst and domain expert [4].

The reason why a verbalization technique for process models is missing might
be a result of several facts. First, the validation of process models in general is
difficult. Domain experts are typically not familiar with fundamental process
concepts such as concurrency, decision points or synchronization. In the same vein,
process models are also more difficult to translate into natural language text. The
non-sequential structure of a process model has to be serialized into sequential,
yet execution-order preserving text. Furthermore, activity labels have to be parsed
into fragments of verb-phrases, which have to be used for constructing sentences.
Such a procedure has to take optionality of information (e.g. using passive voice if
no actor is mentioned) explicitly into account. Finally, the overall text has to be
structured in such a way that the reader can understand the process effectively.

In this paper, we address the challenge of automatic verbalization for process
models. Our contribution is a technique that is able to generate natural language
text from a process model, taking into account the issues of parsing text labels,
sequentializing the structure of the process, as much as flexible sentence and text
planning. We deem this technique to be beneficial not only for process model
validation, but also for various scenarios where diagrams have to be translated into
a corresponding piece of text. These include the generation of work instructions
from process models, creating process handbooks, or publishing processes on the
intranet to an audience that might have little experience with process modeling.

The paper is structured as follows. Section 2 introduces the background of
our work. We illustrate the text generation problem by the help of an example
and identify a list of challenges. Section 3 defines our generation technique. It
addresses the problems of sequentializing the process model, parsing the labels and
flexibly planning sentences and text structure. Section 4 provides an evaluation
of this technique using a collection of process models from practice. Section 5
discusses related work before Section 6 concludes the paper.

2 Background

Our solution for generating natural language texts from process models builds
on general process modeling concepts and natural language architectures. In this
section, we introduce BPMN as the process modeling language upon which we
define our approach. Furthermore, we provide an overview of natural language
generation architectures and the challenges associated with generating text from
process models.

Hotel Service (reduced)

H
ot

el
So

m
m

el
ie

r

Sommelier

Fetch
wine from

cellar

Prepare
alcoholic

beverages

Ki
tc

he
n

Kitchen

Prepare
meal

W
ai

te
r

Waiter

Ready
cart

Deliver to
guest 's
room

Return to
room-
service

Debit
guest 's
account

Ro
om

-S
er

vi
ce

 M
an

ag
er

Room- Service Manager

Take down
order

Assign
order to
waiter

Submit
order

t icket to
kitchen

Alocoholic beverages
ordered?

Give
order to

sommelier

No

Ye
s

Henrik Leopold 1 von 1 28.11.2011

Fig. 1. Exemplary BPMN Process

2.1 Business Process Model and Notation

The Business Process Model and Notation (BPMN) is a process modeling standard
providing a graphical notation for the specification of business processes. Recently,
it was published in its current version 2.0 [5]. The symbol set of BPMN covers
four types of elements: flow objects (activities, events, gateways), connecting
objects (sequence and message flow, associations), swim lanes (pools and lanes)
and artifacts (e.g. data objects and annotations).

Figure 1 shows an example of a business process in a hotel represented as a
BPMN model. It describes how an order is handled. The process includes four
roles and is hence subdivided into four lanes. The activities performed by the
different actors are depicted as boxes with round corners, the diamond shaped
gateways define the routing behavior. The plus in a gateway specifies a parallel
execution, the circle an inclusive choice (one or more branches can be executed)
and the cross an exclusive choice (only one branch can be executed). The process
starts with the room-service manager taking an order. This triggers three streams
of action: a meal is prepared in the kitchen, beverages may be prepared if required,
and the delivery is arranged by the waiter.

2.2 Architectures of Natural Language Generation Systems

In general, there are different techniques available in order to translate process
models into natural language text. Simple, also often called non-linguistic, ap-
proaches are based on canned text or templates-based systems. In the first case

some input data is directly mapped to a predefined string. For instance, a system
translating weather data into natural language text could use the sentence The
weather will be nice today for expressing a warm and sunny day. Slightly more
advanced is the use of templates where at least some information is added to the
predefined string. In this case, the template Today there is a X% probability of
rain could be filled with the according rain probability derived from a data source.
However, such approaches are not considered to be truly linguistic techniques as
the manipulation is done at the character string level [6].

Linguistic, or real natural language generation approaches, use intermediate
structures to obtain a deeper representation of the text. Such an intermediate
structure usually specifies the main lexemes (abstract representations of words
encapsulating inflectional aspects) for each sentence. Moreover, it carries ad-
ditional information, defining for instance the tense or the modus of the verb.
As pointed out by Reiter, many natural language generation systems take a
three-step pipeline approach including the following stages [7]:

1. Text Planning: First, the information is determined which is communicated
in the text. Furthermore, it is specified in which order this information will
be conveyed.

2. Sentence Planning: Afterwards, specific words are chosen to express the
information determined in the preceding phase. If applicable, messages are
aggregated and pronouns are introduced in order to obtain variety.

3. Surface Realization: Finally, the messages are transformed into grammati-
cally correct sentences.

Natural language generation systems have also been defined in a functional
way [8]. Nevertheless, core of all these architectures is the usage of an intermediate
structure for storing messages before they are transformed into natural language
sentences. The advantage of this procedure is the significant gain in maintainability
and flexibility. In a template-based system, each template must be manually
modified if a change in the output text is required. In a linguistic-based approach,
the output of the generation system can be altered by changing a parameter of the
intermediate structure. For instance, the sentence The weather will be nice today
can be easily transformed into The weather is nice today by adapting the tense
feature of the main verb in the intermediate representation. Although templates
and canned text have been critically discussed, they also have advantages [9].
Therefore, Reiter and Mellish propose a cost benefit analysis [10]. As a result,
many natural language generation systems use hybrid approaches where linguistic
techniques are combined with canned text and templates [11,12].

2.3 Challenges in Generating Text from Process Models

There are a number of challenges for the automatic generation of text from process
models. We identified a list of challenges by analyzing the required generation steps
and by investigating the respective literature on natural language generation
systems. The challenges can be assigned to one of four different categories

Table 1. Challenges in Generating Text from Process Models

Challenge References

1 Text Planning
1.1 Linguistic Information Extraction [13,14]
1.2 Model Linearization [15,16]
1.3 Text Structuring [17]

2 Sentence Planning
2.1 Lexicalization [18]
2.2 Message Refinement [19,20]

3 Surface Realization [21,22]
4 Flexibility [7,23]

including text planning, sentence planning, surface realization and flexibility.
Table 1 provides an overview of these challenges and according references.

In the text planning phase we face three main challenges. First, we have
to adequately infer given linguistic information from process model elements.
For instance, the activity Take down order must be automatically split up into
the action take down and the business object order. Without this separation,
it would be unclear which of the two words defines the verb. Label analysis is
further complicated by the shortness of process model labels and the ambiguity
of the English language [24]. The second challenge is the linearization of the
process model to a sequence of sentences. Process models rarely consist of a plain
sequence of tasks, but also include concurrent branches and decision points. In
addition to these tasks, it must be decided where techniques of text structuring
and formatting such as paragraphs and bullet points should be applied.

The sentence planning phase entails the tasks of lexicalization and message
refinement. The aspect of lexicalization refers to the mapping from BPMN
constructs to specific words. It requires the integration of linguistic information
extracted from the process model elements and of control structures as splits and
joins in such a way that the process is described in an understandable manner.
The aspect of message refinement refers to the construction of text. It includes
the aggregation of messages, the introduction of referring expressions as pronouns
and also the insertion of discourse markers such as afterwards and subsequently.
In order to suitably consolidate sentences, the option of aggregation must first be
identified and then decided where it can be applied to improve the text quality.
The introduction of referring expressions requires the automatic recognition of
entity types. For instance, the role kitchen must be referenced with it while the
role waiter must be referenced with he or she. The insertion of discourse markers
should further increase the readability and variability of the text. Hence, varying
markers must be inserted at suitable positions.

In the context of the surface realization, the actual generation of a grammati-
cally correct sentences is performed. This requires the determination of a suitable
word order, the inflection of words, introduction of function words (e.g. articles)
and also tasks such as punctuation and capitalization.

WordNet Stanford
Tagger

BPMN
Process
Model

 Linguistic
Information
Extraction

Annotated
RPST

Generation

Text
Structuring

DSynT-
Message

Generation

Message
Refinement

Text Planning Sentence Planning Realization

RealPro-
Realizer

Natural
Language

Text

Fig. 2. Architecture of our NLG System

Besides the core natural language generation tasks, we consider flexibility to be
an important feature. As we do not expect the input models to adhere to certain
conventions, we have to deal with considerably differing characteristics of the
input models. Different scenarios have to be covered, with varying implications
for the output text. For instance, if a model uses lanes and thus provides a
role description, the sentence can be presented in active voice (e.g. The clerk
checks the application). If it is unknown who performs the considered task, the
description must be presented in passive voice (The application is checked).

3 Text Generation Approach

This section defines our approach to text generation. Figure 2 gives an overview
of the six major components building a pipeline architecture. The following
subsections will introduce each component in detail.

3.1 Linguistic Information Extraction

The goal of this component is the adequate inference of linguistic information
from all labeled process model elements. Thereby, it is important that we are
able to deal with different types of linguistic representations, so-called label
styles. Therefore, we extended prior work which extracted action and business
object from activity labels and events [25,13,14]. We included gateways and arc
labels in the extraction algorithm to cover all relevant process model elements.
The Stanford Parser [26] and the lexical database WordNet [27] are used to
recognize different patterns in gateway and arc labels which we identified in the
context of a comprehensive analysis of industry process models. Based on the
structural insights of process model labels, we can extract action, business object
and possible modifying attributes from any process model label, independently
from the actual linguistic presentation.

Consider the gateway Alcoholic Beverages Ordered? from Figure 1. In this
case the application of the Stanford Parser is impeded by the shortness of the
label. It returns the tag result Alcoholic/NNP Beverages/NNP Ordered/NNP ?/.

indicating that all words are nouns. Hence, it neither recognizes the adjective
nor the participle at the end. Being aware of regular labeling structures, we can
use Wordnet to determine that the first word is an adjective and that the last
word is a verb with the suffix ed. As a result we obtain an annotation record for
this gateway containing the extracted information. Once this has been done for
all labeled process model elements, the annotation records are handed over to
the next module.

3.2 Annotated RPST Generation

The RPST Generation module derives a tree representation of the input model
in order to provide a basis for describing the process step by step. In particular,
we compute a Refined Process Structure Tree (RPST) which is a parse tree
containing a hierarchy of subgraphs derived from the original model [15,16]. The
RPST is based on the observation that every workflow graph can be decomposed
into a hierarchy of logically independent subgraphs having a single entry and
single exit. Such subgraphs with a single entry and a single exit are referred to
as fragments. In a RPST any two of these fragments are either nested or disjoint.
The resulting hierarchy can be shown as a tree where the root is the entire tree
and the leaves are fragments with a single arc.

In total we may encounter four different fragment classes: trivial fragments
(T), bonds (B), polygons (P) and rigids (R). Trivial fragments consist of two
nodes connected with a single arc. A bond represents a set of fragments sharing
two common nodes. In BPMN process models this generally applies for split and
join gateways, including more complex split and join structures such as loops.
Polygons capture sequences of other fragments. Hence, any sequence in a process
model is reflected by an according polygon fragment. If a fragment cannot be
assigned to one of the latter classes, it is categorized as a rigid. Although the
original version of the RPST was based on graphs having only a single entry
and exit point, the technique can be easily extended to compute a RPST for
arbitrary process models. Figure 3 illustrates the concepts using an abstracted
version of the hotel process and its corresponding RPST.

The RPST generation algorithm by [16] does not order the fragments with
respect to the control flow. However, this can be easily accomplished. For each
level in the RPST the order can be determined by arranging the fragments
according to their appearance in the process model. Hence, the first level starts
with the trivial fragment a, connecting the start event and vertex V1. Accordingly,
the trivial fragment b, the bond B1 and the trivial fragments s, t, u and v are
following. If the order is not defined, for instance in case of parallel branches
as within the bond B1, an objective criteria as the length of each path can be
imposed which is conducive for text generation purposes.

In addition to the introduction of a suitable order, we annotate the RPST
with the linguistic information from the extraction phase and with additional
meta information. For instance, the vertex V1 from the trivial fragment a is
annotated with the action take down, the business object order and the role
room-service manager. The bond B1 is annotated with the action order, the

V1

V6

V7

V8

V9 V10 V11

B1 P2
B2

P5 B3 P7

P6

V4 V5

V2 V3

P3

P4

a b

c d e

f g h

i j k

l m

n o
p

r

q

s t u v

P1

(a) Abstract Version of Example Process

P1

P2

B1

B2

P3 P4

a b s t u v

f g h c d e i

P5 q

B3 j k

P6 P7

l m n o

p

r

(b) RPST

Fig. 3. Abstract Version of Figure 1 and its RPST

business object beverages and the adjective alcoholic. Further, the bond as tagged
as an XOR-gateway with Yes/No-arcs of the type skip. The latter aspect is
derived from the fact that one branch is directly flowing into the join gateway
and hence provides a possibility to skip the activities on the alternative branch.

3.3 Text Structuring

To obtain a manageable and well readable text we use paragraphs and bullet
points to structure the messages. We include editable parameters for defining the
size of paragraphs. Once such a threshold is reached, the change of the performing
role or an intermediate event is used to introduce a new paragraph. Similarly,
we make use of bullet points. Every sequence longer than a definable parameter
performed by the same role is presented as a bullet list. Further, the branches
of any split having more than two outgoing arcs are presented as bullet points.
In case of nested splits, the bullet points are indented accordingly in order to
enable the reader to easily keep track of nested structures.

3.4 DSynt-Message Generation

The message generation component transforms the annotated RPST into a list of
intermediate messages. This means that the linguistic information from the model
is not directly mapped to the output text, but to a conceptual representation
which still allows for diverse modifications. In particular, we store each sentence in
a deep-syntactic tree (DSynT), which is a dependency representation introduced
in the context of the Meaning Text Theory [28]. In a deep-syntactic tree each
node is labeled with a semantically full lexeme, meaning that lexemes such
as conjunctions or auxiliary verbs are excluded. Further, each lexeme carries
grammatical meta information, so-called grammemes. Grammemes include voice
and tense of verbs or number and definiteness of nouns. The advantages of

deep-syntactic trees are the rich but still manageable representation of sentences
and the existence of off-the-shelf surface realizers which take deep-syntactic
representations as input and directly transform it into a grammatically correct
sentence.

Based on this intermediate representation we developed an algorithm which
recursively traverses the RPST and generates DSynT-based messages for trivial
fragments and bonds. The following paragraphs introduce the main concepts how
this mapping is conducted in our generation system.

As already pointed out, trivial fragments always consist of two activities with
a simple connection. For the message generation we only consider the source
activity, as the target activity is also included in the subsequent fragment as
a source. Using the annotation from the RPST the considered activity can be
directly mapped to a DSynT. For illustrating this procedure consider the first
activity from the example process (Figure 1). Using the action take down as the
main verb, the role room-service manager as subject and the business object
order as object, we can derive the DSynT depicted in Figure 4(a) representing the
sentence The room-service manager takes down the order. In case a considered
activity is a sub process, we add a footnote to the sentence stating that this step
is further explained in an extra model.

The transformation of bonds is more complex. For demonstrating the approach
we examine the bond B1 from our example process. This bond starts with an
XOR-gateway labeled with Alcoholic Beverages Ordered. Based on the annotation
we derive the condition clause If alcoholic beverages are ordered. This clause is
then passed to the first activity of the yes-arc, where the condition and the main
clause are combined. As a result, we obtain a DSynT representing the sentence
If alcoholic beverages are ordered the room-service manager gives the order to the
sommelier. The according DSynT is depicted in Figure 4(b). Similarly, we can
accomplish the transformation of the join-gateway. The join-condition clause is
then passed to the first activity after the bond (Deliver to Guest’s Room) and
incorporated accordingly. The procedure is used to handle bonds of different
size and type. In case a process model does not provide any information about
the condition of a split, we use predefined DSynT-templates for obtaining a
suitable description. Depending on the requirements of the target group, these
templates can be easily modified or extended. Within the bond, the recursive
transformation algorithm is executed accordingly.

The text generation process builds on the creation of DSynTs with grammemes
capturing all required meta information. This includes simple attributes like the
word class, but also more sophisticated features as the tense or voice of verbs,
the definiteness of nouns or the position of a conditional phrase (see attribute
starting point in Figure 4(b)). In order to obtain a high degree of flexibility, we
implemented a rule system covering an extensive set of modeling scenarios. As
a result, our generation algorithm can automatically decide on these features
based on the given circumstances. Accordingly, the absence of a role description
automatically leads to a passive sentence. In such a case, the first activity of the

example process would lead to a DSynT representing the sentence The order is
taken down.

take down!
class: verb!

room-service  
manager!
class: proper_noun!
article: def!

order!
class: common_noun!
article: def!

I! II!

(a) Simple DSynT

room-service  
manager"
class: proper_noun!
article: def!

to"

I! II!

order"
class: common_noun!
article: def!

ATTR!

II!

order"
class: verb!
voice: pass!
starting_point: +!

ATTR!

beverages"
class: proper_noun!
article: def!

I!

ATTR!

alcoholic"
class: adjective!

ATTR!

if!

give"
class: verb!

sommelier"
class: common_noun!
article: def!

(b) DSynT with Conditional Sentence

Fig. 4. Deep-Syntactic Tree of Two Messages from Figure 1

3.5 Message Refinement

Within the message refinement component, we take care of message aggregation,
referring expression generation and discourse marker insertion.

The need for message aggregation usually arises when the considered process
contains long sequences. In such cases we make use of three aggregation techniques:
role aggregation, business object aggregation and action aggregation. For instance,
if two successive activities are performed by the same role, the messages are
merged to a single sentence. Similarly, activities with equal actions or business
objects are merged to one sentence, if they appear in two sequential activities.

If there are still adjacent messages with the same role after the aggregation,
the role description in the second message is replaced with a referring expression.
We use WordNet for replacing a role with a suitable personal pronoun. More
specifically, we infer all hypernyms of the term associated with the considered role.
As a result we obtain a set of more abstract words which semantically include
the role description. If we e.g. look up the role waiter we will find the hypernym
person indicating that this role can be replaced with he or she. By contrast, the
set of hypernyms of kitchen only contains words like artifact or physical entity
and no link to a human being. Hence, the role kitchen is reference with it.

For the discourse marker introduction, we identify messages appearing in
a strict sequence. Using an extendible set of connectors, we randomly insert a
suitable word. In this way, we obtain a well readable text with sufficient variety.

3.6 Surface Realization

As already pointed out earlier, the complexity of the surface realization task led
to the development of publicly available realizers such as TG/2 [22] or RealPro
[21]. Considering aspects as the manageability of the intermediate structure,
license costs, generation speed and Java compatibility, we decided to utilize the
DSynT-based realizer RealPro from CoGenTex. RealPro requires an XML-based
DSynT as input and returns a grammatically correct sentence.

4 Evaluation

In this section, we demonstrate the capability of our approach to transform
process models to texts. We implemented a prototype and tested it on a set of
53 BPMN models by evaluating the generated texts.

4.1 Prototypical Implementation

We used the approach as defined in the previous section for implementing a Java
prototype. To this end, we confine the system with regard to two dimensions.

First, we reduced the amount of symbols covered by our system due to the
extensiveness of the BPMN 2.0 symbol set. This decision was based on the
observation that only a small set of elements is used in practice [29]. As a result,
our prototype supports the transformation of the following elements: pools, lanes,
activities, standard start and end events, message events, all gateway types,
sequence and message flows and sub processes. However, as the capabilities of
our technique are not associated with the coverage of individual symbols but
with the conceptual approach, our technique can be easily extended.

Secondly, the current implementation supports structured processes and is
not yet able to transform rigids. Nevertheless, there are strategies for obtaining
structured processes from rigids [30]. These transformation algorithms can be
utilized as a preprocessing step.

4.2 Evaluation Setup

To assess the capability of our technique we conducted an experiment. The overall
goal of the experiment was to answer the following four questions:

1. Does the text contain an adequate sentence for each process model element?
2. Can models be adequately transformed?
3. Are the generated sentences grammatically correct?
4. Are the generated sentences stylistically favourable?

We designed a test collection of 53 BPMN process models, which cover
diverse domains and mainly stem from academic training. Table 2 summarizes
the characteristics of the test set. We asked three BPM domain experts with on
average 4.3 years of process modeling experience to independently assess the 53

generated natural language texts with regard to the introduced questions. Any
remark from one of the three evaluators was included in the final assessment. In
addition to this qualitative dimension, we included characteristics such as the
number of words per sentence to further evaluate the texts from a quantitative
perspective.

Table 2. Test Set Characteristics

Property Min Max Average Total

Number of Activities 3 16 8.1 428
Number of Events 2 4 2.4 128
Number of Gateways 1 10 3.9 204

4.3 Results

From the evaluation experiment we learned that the first three of our assessment
criteria are considered to be fulfilled. Our technique generated grammatically
correct texts, which appropriately and completely describe the according process
models. As an example consider the following text which was generated by our
prototype and represents the process model from Figure 1. It illustrates the
handling of labeled and unlabled gateways, nested structures and how referring
expressions are introduced in sequences.

The process begins, when the Room-Service Manager takes down an order. Then,
the process is split into 3 parallel branches:

– In case alcoholic beverages are ordered, the Room-Service Manager gives the
order to the sommelier. Afterwards, one or more of the following paths is
executed:

– The Sommelier fetches the wine from the cellar.
– The Sommelier prepares the alcoholic beverages.

– The Room-Service Manager assigns the order to the waiter. Subsequently,
the Waiter readies the cart.

– The Room-Service Manager submits the order ticket to the kitchen. Then,
the Kitchen prepares the meal.

Once all 3 branches were executed, the Waiter delivers to the guest’s room.
Afterwards, he returns to the room-service. Finally, the Waiter debits the guest’s
account.

One remark of the evaluators was that some models describe the processes in a
very general manner. As an example, consider the transformation of the OR-join
in the generated text. However, this results from the fact that a process model
does not provide further information on the split condition and the performed
activities. Accordingly, the lack of information in the model always translates to
a lack of information in the text.

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50

Number of
Words

Number of
RPST-Nodes

Fig. 5. Correlation between Model and Text Size

With respect to the fourth criterion, in total five sentences were considered
to be stylistically flawed. In particular, the evaluators criticized sentences where
definite articles were unnecessarily inserted. Consider the activity labels Assign
negative points and Ship motorcycles to customer. The first label is transformed
into the sentence The teacher assigns the negative points. Obviously, the use of
the definite article the before negative points is not appropriate. Although it
is not a grammatical mistake, humans would most likely leave out this article.
In the second case, the activity label is transformed into The vendor ships the
motorcycles to the customer. Here the usage of the definite article before customer
is necessary in order to obtain a naturally appealing text. These examples highlight
that the introduction of articles is a context-sensitive task and has to be further
investigated in the future. However, due to the small amount of these cases, we
still consider our technique to produce text of suitable quality.

The quality of the generated texts is also supported by different quantita-
tive characteristics. As originally pointed out in [31], the sentence length is an
important factor for the overall text comprehension. With an average sentence
length of 9.4 words, the generated text can be considered to be easily under-
standable. Further factors for text comprehension are the size of the text and
its paragraphs. Figure 5 illustrates the correlation between text and model size,
where the latter aspect is represented by the number of RPST nodes resulting
from the model. Although some variation is caused be deeper explanations for
bonds, the correlation is approximately linear. As a result, also more complex
models are converted into texts of manageable size. In addition, the average size
of the generated paragraphs of 3.1 sentences indicates a proper organization of
the presented text.

5 Related Work

Techniques for Natural Language Generation have been around for many years
and were applied in many different scenarios. Some examples are the generation
of weather forecasts [23] or the creation of reports on computer systems [32].

Research related to text generation for conceptual models can be divided into
three categories: text generation systems, usage of natural language for formal
specifications and comprehension of text versus models.

There are a few applications of text generation for conceptual modelling.
The ModelExplainer generates natural language descriptions of object models
[33] and the GeNLangUML system transforms UML class diagrams into text
specifications [34]. None of these approaches tackles the specifics of process models.
Our approach complements these systems by introducing a flexible technique
which is able to handle different aspects of control flow.

Natural language is also used for formally specifying business semantics. For
instance, the OMG standard Semantics of Business Vocabulary and Business Rules
(SBVR) uses natural language for specifying complex business rules [42]. Our
technique contrasts this approach by providing a rather informal complementation
to a model while the natural language in SBVR represents a formal specification
itself.

The merits of verbalization for model comprehension and validation are
discussed from different perspectives. The need for natural language feedback in
the validation of conceptual models is addressed in [35,36] by proposing natural
language generation as an appropriate solution. This is in line with the approach
of ORM and NIAM in terms of verbalization [2,3]. The advantages of text
and diagram have been intensively debated in the area of visual programming
languages (see [37] for an overview). Today, the consensus is rather that text plus
diagram provides better comprehension than any of the two in isolation [38]. The
most important reference for this insight is provided by the Cognitive Theory of
Multi Media Learning introduced by Mayer [39]. In a series of experiments Mayer
demonstrated the value of the combination of text and a graphical representation.

6 Conclusion

In this paper, we presented an automatic approach for generating natural language
texts from BPMN process models. This approach combines natural language
analysis, graph decomposition techniques and a linguistic framework for flexible
text generation. The approach has been implemented as a prototype. An evalua-
tion of 53 BPMN process models shows that our technique is capable of reliably
generating grammatically and stylistically appropriate texts, which adequately
describe the considered process models.

Although the current results are very promising, our technique still requires
further empirical tests. Most importantly, we plan to demonstrate that the
generated text really helps users to understand process models. We assume that
especially non-frequently used model elements such as attached events or complex
gateways might be unclear to model readers. Further, we think that particularly
people who are not very familiar with BPMN can benefit from an additional text.
We aim to address these assumptions in a series of experiments. Moreover, we
also plan to consider additional use cases for our technique such as the generation
of test scenarios or personalized work instructions.

In addition to these points, the approach should be further generalized. We
intend to include the whole BPMN symbol set and to cover text generation for
rigids that cannot be structured. This could be done, for instance, by determining
preconditions for specific unstructured sequences of activities as proposed in [40].

Beyond that, we plan to extend the current prototype towards a comprehensive
technique for process model validation. By consulting the generated texts, also
users who are not confident with interpreting process models can decide about
the validity of a model. They should then have an interface to edit the generated
text. A reverse generation procedure as proposed in [41] could then be used to
apply the changes in the model.

References

1. Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process
Management Journal 12(2) (2006) 249–254

2. Verheijen, G., van Bekkum, J.: NIAM, an information analysis method. In: IFIP
WG8.1 Conf. on Comparative Review of Inf. System Method. (1982) 537–590

3. Nijssen, G., Halpin, T.: Conceptual Schema and Relational Database Design: a fact
oriented approach. Prentice-Hall, Inc. (1989)

4. Frederiks, P., Weide, T.: Information modeling: The process and the required
competencies of its participants. Data & Knowledge Engineering 58(1) (2006) 4–20

5. OMG: Business process model and notation (bpmn) version 2.0. (2011)
6. Reiter, E.: Nlg vs. templates. In: In Proceedings of the Fifth European Workshop

on Natural Language Generation. (1995) 95–106
7. Reiter, E., Dale, R.: Building applied natural language generation systems. Nat.

Lang. Eng. 3 (March 1997) 57–87
8. Cahill, l. et al.: In search of a reference architecture for nlg systems. (1999) 77–85
9. van Deemter, K., Krahmer, E., Theune, M.: Real versus Template-Based Natural

Language Generation: A False Opposition? Comput. Linguistics 31(1) (2005) 15–24
10. Reiter, E., Mellish, C.: Optimizing the costs and benefits of natural language

generation. In: IJCAI. (1993) 1164–1171
11. Galley, M., Fosler-Lussier, E., Potamianos, A.: Hybrid natural language generation

for spoken dialogue systems (2001)
12. Reiter, E., Mellish, C., Levine, J., Bridge, S.: Automatic generation of on-line

documentation in the idas project. In: ANLP. (1992) 64–71
13. Leopold, H., Smirnov, S., Mendling, J.: Recognising Activity Labeling Styles in

Business Process Models. EMISA 6(1) (2011) 16–29
14. Leopold, H., Mendling, J., Reijers, H.: On the Automatic Labeling of Process

Models. In: CAiSE 2011. Volume 6741 of LNCS., Springer (2011) 512–520
15. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data &

Knowledge Engineering 68(9) (2009) 793 – 818
16. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization

of the refined process structure tree. In: Web Services and Formal Methods. Volume
6551 of LNCS. Springer (2011) 25–41

17. Meteer, M.W.: Expressibility and the Problem of Efficient Text Planning. St.
Martin’s Press, Inc., New York, NY, USA (1992)

18. Stede, M.: Lexicalization in natural language generation: A survey. Artificial
Intelligence Review 8 (1994) 309–336

19. Dalianis, H.: Aggregation in natural language generation. Computational Intelli-
gence 15(4) (1999) 384–414

20. Kibble, R., Power, R.: An integrated framework for text planning and pronominali-
sation. In: Natural language generation, ACL (2000) 77–84

21. Lavoie, B., Rambow, O.: A fast and portable realizer for text generation systems.
In: Applied natural language processing, ACL (1997) 265–268

22. Busemann, S.: Best-first surface realization. Interface (1996) 10
23. Goldberg, E., Driedger, N., Kittredge, R.: Using natural-language processing to

produce weather forecasts. IEEE Expert 9(2) (1994) 45–53
24. Dixon, R.: Deriving Verbs in English. Language Sciences 30(1) (2008) 31–52
25. Leopold, H., Smirnov, S., Mendling, J.: Refactoring of Process Model Activity

Labels. In: NLDB 2010. Volume 6177 of LNCS., Springer (2010) 268–276
26. Klein, D., Manning, C.D.: Fast Exact Inference with a Factored Model for Natural

Language Parsing. In: NIPS 2003. Volume 15., MIT Press (2003)
27. Miller, G.: WordNet: a lexical database for English. Comm. ACM 38(11) (1995)

39–41
28. Mel’cuk, I., Polguère, A.: A formal lexicon in the meaning-text theory (or how to

do lexica with words). Computational Linguistics 13(3-4) (1987) 261–275
29. zur Muehlen, M., Recker, J.: How much language is enough? theoretical and

practical use of the business process modeling notation. In: CAiSE 2008. Volume
5074 of LNCS., Springer (2008) 465–479

30. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring acyclic process
models. Information Systems (2012) to appear

31. Flesch, R.: How to test readability. (1951)
32. L. Iordanskaja, R. Kittredge, A.P.: Lexical selection and paraphrase in a meaning-

text generation model. Natural Language Generation in Artificial Intelligence and
Computational Linguistics (1991) 293–312

33. B. Lavoie, O. Rambow, E. Reiter.: The modelexplainer. In: Proceedings of the 8th
international workshop on natural language generation. (1996) 9–12

34. Meziane, F., Athanasakis, N., Ananiadou, S.: Generating natural language specifi-
cations from uml class diagrams. Requirements Engineering 13 (2008) 1–18

35. Dalianis, H.: A method for validating a conceptual model by natural language
discourse generation. Advanced Information Systems Engineering (1992) 425–444

36. Rolland, C., Proix, C.: A natural language approach for requirements engineering.
In: CAISE 1992. Volume 593 of LNCS. Springer (1992) 257–277

37. Whitley, K.N.: Visual programming languages and the empirical evidence for and
against. J. Vis. Lang. Comput. 8(1) (1997) 109–142

38. Ottensooser, A., Fekete, A., Reijers, H.A., Mendling, J., Menictas, C.: Making
sense of business process descriptions: An experimental comparison of graphical
and textual notations. Journal of Systems and Software (2012) to appear.

39. Mayer, R.: Multimedia Learning. 2nd Ed. Cambridge Univ. Press (2009)
40. Ouyang, C., Dumas, M., van der Aalst, W., ter Hofstede, A., Mendling, J.: From

business process models to process-oriented software systems. ACM Trans. Softw.
Eng. Methodol. 19(1) (2009)

41. Friedrich, F., Mendling, J., Puhlmann, F.: Process Model Generation from Natural
Language Text. In: CAiSE 2011. Volume 6741 of LNCS., Springer (2011) 482–496

42. OMG: Semantics of Business Vocabulary and Business Rules (SBVR) (2008)

