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a b s t r a c t

Large corporations increasingly utilize business process models for documenting and
redesigning their operations. The extent of such modeling initiatives with several
hundred models and dozens of often hardly trained modelers calls for automated
quality assurance. While formal properties of control flow can easily be checked by
existing tools, there is a notable gap for checking the quality of the textual content of
models, in particular, its activity labels. In this paper, we address the problem of activity
label quality in business process models. We designed a technique for the recognition
of labeling styles, and the automatic refactoring of labels with quality issues. More
specifically, we developed a parsing algorithm that is able to deal with the shortness of
activity labels, which integrates natural language tools like WordNet and the Stanford
Parser. Using three business process model collections from practice with differing
labeling style distributions, we demonstrate the applicability of our technique. In
comparison to a straightforward application of standard natural language tools, our
technique provides much more stable results. As an outcome, the technique shifts the
boundary of process model quality issues that can be checked automatically from
syntactic to semantic aspects.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Business process modeling is increasingly used in
organizations for supporting documentation, organiza-
tional redesign, and information system development
[1]. Typically, several expert modelers and a considerable
number of casual modelers from diverse lines of business
are involved in the creation of process models. Often, the
outcome of such an initiative are several hundred process
models. Maintenance and quality assurance of these
process models is a critical challenge given this big
number of models and modelers. Indeed, different quality
issues have been observed: up to 20% of all models in

collections from practice contain errors [2], and many
casual modelers are not sufficiently trained [3].

There are several measures that organizations can take
for addressing these problems including staff training,
enforcement of modeling guidelines, and usage of formal
analysis tools. Modeling expertise is an important factor
for the success of process modeling projects [4]. It has also
been shown that experienced modelers perform signifi-
cantly better in process model comprehension experi-
ments [5]. Training of modelers is therefore a suitable
measure to assure model quality. Modeling guidelines are
also helpful for assuring quality. The Guidelines of Process
Modeling [6] and the Seven Process Modeling Guidelines
[7] summarize essential modeling rules. They are typi-
cally extended and refined by organizations for their
modeling projects. Finally, there are various formal ana-
lysis techniques that help to detect modeling errors.
Properties like soundness can be used to check whether
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a process model contains deadlocks [8]. Several modeling
tools provide soundness analysis by the click of a button.

Automatic analysis techniques such as checking
soundness are very attractive for quality assurance. The
results are precise and unambiguous, and automatic
analysis tools can easily work on a large set of models
in a short period of time. It is a problem that formal
techniques so far only cover a small share of the proper-
ties that need to be checked. From the perspective of the
SEQUAL quality framework [9], soundness relates to the
syntactic layer of a model since it refers to its formal
structure. Many guidelines though point to the textual
content, e.g., in terms of a consistent design [6] or a verb–
object style for constructing labels [7], which also covers
semantical aspects. The importance of naming conven-
tions [10,11] and the potential of using natural language
processing techniques for checking them has been
recently recognized [12,13]. The specific structure of
activity labels in process models remains a challenge
though. Due to the shortness of labels, natural language
tools like the Stanford Parser [14] cannot be directly
applied. As the labels are not full sentences, such parsers
lack context to perform well.

This paper addresses the problem of analyzing textual
activity labels in process models. Our contribution is an
activity label refactoring technique that utilizes different
aspects of context of a label for an accurate classification.
We then utilize the parsing results for an automatic
rework of the labels. This paper generalizes and extends
the prior work on EPC-specific label parsing [12,15]. We
provide a thorough evaluation of our technique based on
a prototypical implementation and three process model
collections from practice containing more than 10,000
labels. The results show that our technique achieves high
precision and recall in parsing labels, and performs sub-
stantially better than an unspecific application of the
Stanford Parser.

The remainder of this paper is structured as follows.
Section 2 discusses labeling styles of process models and
parsing challenges. Section 3 defines our three-step
approach to label refactoring based on labeling style recog-
nition, action and business object derivation, and label
composition. Section 4 presents the results of an empirical
evaluation studying three process model collections from
practice. Section 5 discusses our contribution in the light of
related work. Section 6 summarizes the paper and con-
cludes with an outlook on the future research.

2. Background

In this section we discuss the background of our
research. Section 2.1 introduces different perspectives on
business process model quality, including the quality of text
labels. Section 2.2 defines different styles of activity labeling
in process models. Finally, Section 2.3 discusses challenges
for an automatic refactoring of activity labels.

2.1. Perspectives on process model quality

Business process modeling is often conducted in com-
panies that have reached a certain level of size and

complexity. Business process models help documenting
and analyzing the division of labour as well as the
interactions and handovers between actors working in a
process. Against this background, business process mod-
eling is challenged by several factors. First, the companies
have to maintain collections of several hundred process
models. Second, the modeling initiative in such compa-
nies typically involve dozens of modelers with many of
them not being modeling experts. The complexity of this
setting demands dedicated measures to assure that pro-
cess models of high quality are created. The high number
of models motivates an extensive automation of the
quality assurance.

Automatic analysis of process models typically focuses
on the process behavior. Fig. 1 shows the example of a
simple business process modeled in BPMN. The process
starts with the activity Make decision and proceeds with
the XOR-split gateway. This diamond-shaped element
defines a decision point such that control is either
forwarded to the upper or the lower branch based on a
condition resolved at runtime. Subsequently, either Alter-
native 1 Execution or Executing alternative 2 are conducted,
but never both. Control is then passed to the AND-join
gateway. This diamond-shaped element with the plus
sign waits for both branches to complete. Only afterwards
Synchronization of both completed branches can be exe-
cuted. If a formal analysis of this model is conducted, for
instance a soundness check [8], it becomes clear that the
process can never be executed from the start to the end:
the AND-join requires both previous branches to termi-
nate while the XOR-split takes care that only one of them
becomes activated. This means that the model contains a
deadlock. The modeler should be informed about this
problem, and would best replace the AND-join with an
XOR-join gateway.

Correctness is critical for the specification of a process
[16]. Quality issues like the deadlock in Fig. 1 can be
efficiently found for different classes of process models.
Languages, like BPMN, EPCs, or UML Activity Diagrams,
that can be mapped to free-choice Petri nets can be
checked for soundness in quadratic time [17], structured
models in linear time [18]. There are also techniques
available for checking the correctness of data flow
[19–21], satisfiability of constraints on the resource per-
spective [22–24], or the interoperability of cross-organi-
zational workflows [25]. These correctness aspects are
well understood and efficiently supported by tools for a
wide range of process model classes.

A problem is that verification tools do not address the
full spectrum of process model quality aspects. This holds

Synchronization of
both completed

branches

Make
decision

Alternative 1
Execution

Executing
alternative 2

Fig. 1. Example of a business process model in BPMN.
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most notably for the textual content of process models.
The modeling guidelines recommend activity labels of a
verb–object style [26,7]. Labels following this style start
with the action referenced by a verb in imperative form
followed by the corresponding business object which is
involved in the activity. Empirical research witnessed that
verb–object labels are superior for comprehension than
labels of other styles [11]. If we consider Fig. 1 again, we
see that only the first activity Make decision is compliant
with the verb–object style, while other labels define the
action using a noun. Labels like Alternative 1 Execution can
be reformulated as verb–object labels with similar mean-
ing (Execute alternative 1 in this case). A problem is
though that process models in practice include on average
20 activities [27]. For a process model collection with
several hundred models, this means that thousands of
activity labels have to be inspected and potentially
corrected to achieve verb–object style compliance. An
automatic technique for refactoring of labels would help
to conduct quality assurance much more efficiently.

2.2. Labeling styles

The design of effective and precise algorithms for
labeling style refactoring requires a thorough understand-
ing of the current labeling practices. In particular, it is
essential to understand what label structures we may
encounter and how these structures can be reliably
recognized. Prior works list labeling styles we consider
in our approach [11–13]. Altogether, there are seven
labeling styles summarized in Table 1: verb–object, three
types of action-noun, a descriptive style, an irregular
category, and a no-action class.

The labels of verb–object style contain an action that is
followed by a business object. Examples of these labels are
verb phrases like Create invoice and Validate order. In the
first case the action is create and the business object is
invoice, while in the second example the action is validate
and the business object is order. Notice that a business
object may be absent such as in the labels Analyze or Notify.
As these labels are also verb phrases, we relate them to the
same style. A special case is given by verb phrases which
contain a prepositional phrase, e.g., Create order for received
request. A prepositional phrase in such labels brings addi-
tional information to the reader; it is optional.

The labels of action-noun style (np) start with a business
object followed by an action. Examples of labels adhering to
this style are noun phrases like Vendor evaluation and
Schedule approval. In the first case the action is evaluate
and the business object is vendor, while in the second
example the action is approve and the business object is
schedule. Notice that a business object may be absent as in
the labels Analysis or Notification. As these labels are also
noun phrases, we relate them to the same style. Another
special case is given by noun phrases which contain a
prepositional phrase, e.g., Revenue planning in work break-
down structure. A prepositional phrase in such labels brings
additional information to the reader; it is optional.

The labels of action-noun style (of) are a specific kind of
a noun phrase with an of prepositional phrase. However,
the action is represented by a noun which comes first and

is succeeded by a prepositional phrase. The prepositional
phrase starts with a preposition of and refers to a business
object. Examples are Creation of specification and Settle-
ment of order. For the two given examples the actions are
create and settle, respectively, and business objects are
specification and order. Similar to the labels of the previous
labeling style, the labels of noun phrase with of can have
an optional prepositional phrase, e.g., Creation of specifica-
tion for budget planning.

The labels of action-noun style (ing) are indicated by a
verb in -ing form. This gerund is succeeded by the
business object captured as a noun. The following labels
are representatives of this class: Creating version and
Processing requisition for projects. For the first label the
action is create and the business object is version while in
the second example the action is process and the business
object is requisition. Notice that the label of this style may
have an optional prepositional phrase (e.g., as for projects
in Processing requisition for projects).

The majority of labels adheres to the action-noun
styles described above [13]. However, a small share of
the labels that are noun phrases belongs to none of them.
We assign such labels to action-noun style (irregular).
These labels have an anomalous structure. For instance,

Table 1
Activity labeling styles.

Labeling style Structure Example

Verb-object VO VP

VB

a

NP

NN

bo

Create invoice

Action-noun AN (np) NP

NN

bo

NN

a

Invoice creation

Action-noun AN (of) NP

NP PP

NN

a

NP

NN

bo

IN

'of'

Creation of invoice

Action-noun AN (ing) VP

VBG

a

NP

NN

bo

Creating invoice

Action-noun AN
(irregular)

/anomalousS LIFO: valuation: pool
level

Descriptive DES NP

NP

NN

VB

NN

bo

VBZ

a

Clerk answers call

No-action NA NP

NN

bo

Error
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the majority of these labels contains punctuation symbols
such as ’:’ or ’;’ connecting the parts of the label in a
special manner. As examples consider Profit Center Assess-
ment: Plan or LIFO: Valuation: Pool Level.

The labels of descriptive style describe activities from a
third person perspective. Most of these labels start with
the name of the resource executing the activity. The
resource is followed by the action in the third person
form and the business object. Examples of descriptive
labels are Accounting creates invoice and Applies for regis-
tration. While the first label example contains the actor
Accounting, the second label directly starts with the action
succeeded by the business object. Notice that a preposi-
tional phrase may follow after the business object.

Although activity labels should point to an action to
provide transparent instructions to the model reader,
there are activity labels which do not refer to any action.
We assign these labels to the no-action style. Examples of
no-action labels are nouns without any reference to an
action such as Error. Further examples of no-action labels
from an industrial model collection analyzed by Mendling
et al. [11] are Information System and Data Basis, both
obviously including no reference to a particular activity.

2.3. Limitations of natural language processing methods for
activity label analysis

Natural language text fragments in activity labels
demonstrate two properties significant in the context of
label analysis. First, activity labels are succinct and typi-
cally do not exhibit a complete sentence structure. In this
way, they expose a limited amount of information about
their grammatical structure. Second, activity labels tend
to suffer from the zero derivation phenomenon of verbs
[28]. While some verbs in the English language are
formed from nouns by adding suffixes, e.g., -ize or (i)fy,
verbs of zero derivation belong to a special kind of
homonyms. As such, zero derivation verbs are syntacti-
cally identical to the corresponding noun. Zero derivation
is a particular challenge in the context of business process
models, since a lot of nouns referencing business objects
are homonyms of zero-derivation verbs. Examples are an
order (noun) and to order (verb) or a process (noun) and to
process (verb).

The two aforementioned properties impede activity
label analysis. In particular, they limit the application of
ideas developed for analysis of natural language text. For
instance, Leopold et al. [29] argue that the Stanford Parser
has to be adapted for activity label analysis in order to be
able to deal with short labels and zero derivation. There-
fore, the activity label refactoring proposed in this paper
builds on a specific approach to label parsing which
makes use of concepts from natural language processing
(NLP). NLP is a research field that studies how software
systems can analyze, understand, and produce the human
language [30]. NLP is a highly interdisciplinary research
area as its foundations lie in disciplines such as computer
science, linguistics, logic, and psychology [31]. The appli-
cation fields of NLP are diverse and can be found in
natural language text processing [32,33], machine trans-
lation [34,35], and speech recognition [36,37]. Based on

NLP concepts, we design a technique for working with the
specifics of short activity labels. We also integrate two
existing NLP tools: The Stanford Parser and WordNet.

The Stanford Parser is a probabilistic natural language
parser recognizing the grammatical structure of sen-
tences. To analyze texts in a natural language, the prob-
abilistic parser requires a prior initialization with a
statistical model of this natural language. The Stanford
Parser works with a pre-tagged version of the Penn
Treebank corpus [38]. This text collection includes a set
of Wall Street Journal articles tagged with grammatical
information by humans. Once initialized, the Parser is
capable of discovering groups of related words within a
sentence or identification of a grammatical role a word
plays in a sentence [14,39]. The straightforward applica-
tion of the Stanford Parser for discovery of activity labels
is interfered by the shortness of activity labels. However,
we use the Stanford Parser for analysis of descriptive style
labels, which are often full sentences.

The second tool we incorporate into our approach is
WordNet. WordNet is a lexical database for the English
language developed at the Princeton University [40].
WordNet organizes nouns, verbs, adjectives, and adverbs
into logical groups called synsets. Each synset is a set of
synonymous words or collocations (a combination of
words with a specific meaning such as fast food or think
tank). As one word may have various meanings, each
synset comprises only words or collocations having the
same meaning in a particular context, such that they are
interchangeable. Furthermore, WordNet specifies several
lexical and semantical relations for words, e.g., hypo-
nymy, meronymy, and holonymy. Using these relations,
it is for instance possible to discover a verb for its
corresponding noun. Our technique for activity label
refactoring uses WordNet in several ways. First, we use
it as a dictionary to check if a word can exist in a
particular part of speech. Second, WordNet facilitates
stemming. Finally, we use the relations between verbs
and nouns to express an action captured with a noun by
means of a corresponding verb.

3. Activity label refactoring

This section discusses our automatic approach to
activity label refactoring. The different algorithms of this
approach are designed to work accurately in terms of
precision and recall. This means that the percentage of
misclassified labels needs to be small, since otherwise the
refactoring operation produces damage. Our approach
works in four general phases:

1. Recognition of activity labeling style.
2. Analysis of action-noun labels.
3. Derivation of an action and a business object from

activity label.
4. Composition of a verb–object activity label.

In the remainder of this section, we elaborate on these
phases step by step. Among the four phases, the initial
activity labeling style recognition is the most critical, as a
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wrong classification of a label leads to incorrect action
and object derivation and a wrong verb–object label.
Accordingly, style recognition is discussed in detail. It is
subdivided into four subordinate stages.

3.1. Recognition of activity labeling style

The initial phase of activity labeling style recognition
aims to assign a label to its correct labeling style. Because
of the challenges of short labels and zero-derivation
ambiguities, we design a specific approach that is tailored
to the requirements of process models.

The key feature of the labeling style recognition algo-
rithm is the analysis of label context information. We
structure the context into four levels: (1) activity label
itself, (2) process model containing the activity, (3)
process model collection, and (4) knowledge on word
frequencies (see Fig. 2). These levels are organized in a
sequence from the most local context towards most
generic. The algorithm tries to classify an activity label
starting from the most local context, i.e., the label, and
broadening the context, once the previous level is insuffi-
cient. If required it takes more generic, yet increasingly
uncertain information into account. Against this back-
ground, the labeling style recognition is organized into
four subordinate stages:

" Stage1: Label analysis.
" Stage2: Model analysis.

" Stage3: Model collection analysis.
" Stage4: Natural language analysis.

In the remainder of this section we elaborate on
each stage.

3.1.1. Stage 1: label analysis

Algorithm 1. Activity labeling style recognition, label
analysis.

1: recognizeUsingLabel(Set modelActivityLabels)
2: Set unrecognizedLabels¼ |;
3: global Set verbs¼ |;
4: global Set nouns¼ |;
5: global Set labelsvo ¼ |;
6: global Set labelsan ¼ |;
7: global Set labelsdes ¼ |;
8: for all label 2 modelActivityLabels do
9: if getStyleByRule(label)!¼UNCLASSIFIED then
10: if getStyleByRule(label)¼¼VERB-OBJECT then
11: labelsvo¼ labelsvo [ flabelg;
12: if getStyleByRule(label)¼¼ACTION-NOUN then
13: labelsan ¼ labelsan [ flabelg;
14: if getStyleByRule(label)¼¼DESCRIPTIVE then
15: labelsdes ¼ labelsdes [ flabelg;
16: else if isVerb(label.words[1]) then
17: if isInfinitive(label.words[1]) then
18: Set potentialVerbs¼getOtherPotentialVerbs(label);
19: if potentialVerbs¼ ¼ | then
20: verbs¼ verbs [ flabel:words½1%g;
21: labelsvo¼ labelsvo [ flabelg;
22: else
23: unrecognizedLabels¼ unrecognizedLabels [ flabelg;
24: else

Change in 
Material Price 

Batch input 
has been 

created for 
price change 

Material price 
has been 
changed 

V

Activate Future 
Material Price 

Future 
Material Price 

must be 
activated 

Revaluation 
Document 
has been 
created 

I 

II 

III IV 

Word 
Frequency 

List 

Corpus of 
Contemporary 

American 
English 

Fig. 2. Four levels of context used within activity labeling style recognition.
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25: nouns¼ nouns [ flabel:words½1%g;
26: labelsan ¼ labelsan [ flabelg;
27: else
28: nouns¼ nouns [ flabel:words½1%g;
29: labelsan ¼ labelsan [ flabelg;
30: recognizeUsingModel(unrecognizedLabels)

This step tries to assign each activity label either to the
verb–object style, any of the action-noun styles, or the
descriptive style. The algorithm’s input is a set of activity
labels of one process model modelActivityLabels. The core
idea of the algorithm is to reject a hypothesis that a label
is of verb–object style. Furthermore, the global set of
verbs and nouns is populated for later usage. Algorithm 1
illustrates the steps of the first stage.

Algorithm 1 starts by applying a set of structural rules
against the considered label which doubtlessly indicates
the used labeling style (line 9). We included the following
rules as a part of the getStyleByRule function to predeter-
mine the labeling style:

" Of-rule: The usage of the preposition of in the second
position of the label requires the first word to be a
noun representing the action. In case a phrasal verb is
used, the of can consequently be found in the third
position of the label. As examples consider the labels
Approval of concept or Notification of Customer which
can be, based on this rule, directly assigned to the
action-noun style.

" If-rule: The usage of if at the second or, in case of a
phrasal verb, at the third position of the label implies
an imperative action as the first word. The algorithm
classifies such labels, as, for instance, Check if customer
is satisfied, as verb–object labels.

" Condition rule: Some labels provide extensive informa-
tion by using a combination of a main and a subordi-
nate clause. This is, for instance, the case if a condition
for the instructed action is stated. Such conditions are
frequently introduced by fragments as in case of, in the
event of or if. These subordinate clauses are then
succeeded by a main clause starting with an impera-
tive verb. Hence, labels as In case of continuous delay
escalate are directly assigned to the verb–object style.

" Descriptive rule: Stage 1 also uses rules to detect
descriptive labels. As descriptive labels are fragments
of natural language text, we analyze them by means of
the Stanford Parser. In this way, labels without an
actor, as writes down annual fee, and also labels with
actor, as Seller processes order, can be allocated to the
descriptive style. Once the Parser recognizes the first
possible verb in the label as a third person form of a
verb, the label is categorized accordingly.

If no structural rule applies to the label, Algorithm 1
proceeds by considering potential verbs at different posi-
tions. First, it checks whether the first word of the label is
a potential verb (line 16). If this is the case, we investigate
whether the first word also equals the respective impera-
tive of the verb it may represent. As the imperative in
English always equals the infinitive, we implement this

check using WordNet. If this assumption is confirmed, we
consider a case of zero-derivation ambiguity and proceed
with further analysis steps. To reliably decide about the
zero-derivation labels, the algorithm detects other
potential verbs in the label (line 18). As an example
consider the label Order System. The word order suffers
from zero-derivation ambiguity and without examining
the rest of the label, an automatic decision is impossible.
However, if we assume facing an action-noun label, we
are able to figure out that system cannot be an action.
Thereafter, the only potential verb in this label is given
by order. In this case the label is assigned to the verb–
object style (lines 20–21). Nevertheless, if multiple poten-
tial verbs are identified, the classification decision is
handed over to the second stage of labeling style analysis:
we add the label to the set of unrecognized labels
(line 23).

If the first word of a label is not an infinitive, the label
is assigned to the action-noun style and the precise style
is determined later on (line 26). Similarly, the label is
classified as action-noun once its first word is not a verb
(line 29). After every label in the set was processed,
unrecognized labels are passed as the input to the
Algorithm 2 (line 30).

3.1.2. Stage 2: model analysis

Algorithm 2. Activity labeling style recognition, model
analysis.

1: recognizeUsingModel(Set labels)
2: Set unrecognizedLabels¼ |;
3: for all label 2 labels do
4: assigned¼false;
5: Set processModelLabels¼

label:getProcessModelðÞ:getActivityLabelsðÞ;
6: for all pmLabel 2 processModelLabels do
7: if pmLabel:words½1% ¼ ¼ label:words½1% and pmLabel 2

VOLabels then
8: verbs¼ verbs [ flabel:words½1%g;
9: labelsvo¼ labelsvo [ flabelg;
10: assigned¼true;
11: if pmLabel:words½1% ¼ ¼ label:words½1% and pmLabel 2

ANLabels then
12: nouns¼ nouns [ flabel:words½1%g;
13: labelsan ¼ labelsan [ flabelg;
14: assigned¼true;
15: if !assigned then
16: unrecognizedLabels¼ unrecognizedLabels [ flabelg;
17: recognizeUsingModelCollection(unrecognizedLabels)

Algorithm 2 implements the second stage of activity
labeling style recognition. It takes information on label
styles in the whole model into account. Its input is the set
of labels that have not been recognized in Stage 1. To
classify a label, the algorithm inspects the process model
in which the activity label is observed. In particular, for
each label to be classified the algorithm checks its first
word. All the labels of the activities in this model that
start with the same word are investigated. If the process
model includes such an activity which was already
assigned to a style, the current label is allocated
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accordingly (lines 8–10, 12–14). If the label was not
assigned using this strategy it is added to the newly
created set of unrecognized labels. After every label in
the set was processed, the Stage 3 of recognition is
triggered (line 17).

3.1.3. Stage 3: model collection analysis

Algorithm 3. Activity labeling style recognition, model
collection analysis.

1: recognizeUsingModelCollection(Set labels)
2: Set unrecognizedLabels¼ |;
3: for all label 2 labels do
4: if label:words½1% 2 verbs and label:words½1%=2nouns then
5: labelsvo ¼ labelsvo [ flabelg;
6: else if label:words½1% 2 nouns and label:words½1%=2verbs then
7: labelsan ¼ labelsan [ flabelg;
8: else
9: unrecognizedLabels¼ unrecognizedLabels [ flabelg;
10: recognizeUsingLanguage(unrecognizedLabels)

The Stage 3 is described by Algorithm 3. The input of
the algorithm is the set of labels unrecognized in
Stage 2. Algorithm 3 broadens the context from the model
to the process model collection level. Technically, this
context is captured by sets of verbs and nouns, created in
the preceding stages. These two sets contain the first
words of verb–object and action-noun labels of the
process model collection. Inspecting the sets of verbs
and nouns the algorithm checks if the first word of an
unrecognized label has been considered a verb or a noun
earlier. If the word is exclusively contained in one of these
sets, the label is assigned to the respective labeling style
(lines 5 and 7). Labels that are not classified within the
first three algorithm stages are handled by Stage 4
(line 10).

3.1.4. Stage 4: natural language analysis

Algorithm 4. Activity labeling style recognition, natural
language analysis.

1: recognizeUsingLanguage(Set labels)
2: for all label 2 labels do
3: int verbFrequency¼getVerbTagsInCorpus(label.words[1])
4: int nounFrequency¼getNounTagsInCorpus(label.words[1])
5: if verbFrequencyZnounFrequency then
6: labelsvo ¼ labelsvo [ flabelg;
7: else
8: labelsan ¼ labelsan [ flabelg;

Algorithm 4 finalizes labeling style recognition. In
order to decide upon the labeling style, it is necessary to
disambiguate the first word and decide whether it repre-
sents an action. In Stage 4, we exploit properties of the
English language. In this language a word may belong to
several parts of speech. However, analysis of large natural
language text collections allows us to learn frequencies
for each word. Therefore, we have considered a frequency
list derived from the Corpus of Contemporary American
English [41]. This list contains 500,000 words with their
parts of speech and the respective frequencies in the

corpus. Having this information at hand we learn for each
word its part of speech and its frequency. If the verb
frequency is higher or equal to the noun usage count, the
label is allocated to the verb–object style. If it is lower, the
label is consequently assigned to the action-noun style. In
this way every remaining label is assigned to a labeling
style. As an example consider the label Credit Check in
which both words can be used as verbs as well as nouns.
In order to decide about the labeling style we access the
frequency list and consider the part of speech related
occurrences for the word credit. As a result, we receive
7169 occurrences for credit as a verb and 36,784 for
credit as a noun. Consequently, we assume credit to be a
noun and assign the label Credit Check to the action-
noun style.

3.2. Analysis of action-noun labels

Once the activity labels are separated into verb–object
and action-noun labels, it is necessary to determine the
exact style of the latter group. Based on this classification,
we directly infer the position of verbs and business
objects in the label. For determining the labeling style,
there is a set of rules to be considered:

" If the label contains irregular characters, the style is set
accordingly.

" If conjunctions or prepositions are found, we store the
position of their first occurrence.

" If the label starts with a gerund, we check whether it
really represents an action. Consider the label Planning
scenario processing as discussed in Leopold et al. [13].
Planning is a gerund, but it can also be a part of a
business object. For resolving this ambiguity, we
analyze surrounding events or activities preceding
and succeeding the considered activity with the
inspected label. We might find that the activity is
connected to an event labeled with Planning scenario
is processed. A part of speech analysis identifies plan-
ning and scenario as nouns and process as a verb.
Therefore, we assume that processing defines the
action. The label is classified as action-noun AN(ing).

" If the label contains prepositions and the first one is an
of, the label is qualified as action-noun AN(of).

" Otherwise, the label is assumed to be action-noun
AN(np).

3.3. Derivation of action and object

At this stage, all the information is available for
deriving the action and the business object from the label.
Algorithm 5 defines a derivation method for action-noun
(np), action-noun (of), and action-noun (ing) styles and
descriptive labels. These are the labels that can be system-
atically refactored. Labels of irregular style are not
addressed. Algorithm 5 also does not address labels that
contain coordinating conjunctions. The input of the algo-
rithm is an action-noun label label and a corresponding
LabelProperties object prop storing the classification
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properties of the prior steps. The output of the algorithm
is the set prop with action and bObject properties set.

Algorithm 5. Derivation of an action and a business
object from a label.

1: deriveActionAndBusinessObject(Label label, LabelProperties
prop)

2: if !prop.hasConjunctions then
3: size¼ label.words.size;
4: if prop.style¼¼NOUN then
5: if prop.hasPrepositions then
6: label¼ label:words½1%þ ( ( ( þ label:words½prop:pIndex)1%;
7: if size¼¼1 then
8: action¼ label.words[1];
9: else
10: if label:words½size)1%þ label:words½size% is a phrasal verb

then
11: prop:action¼ label:words½size)1% þ label:words½size%;
12: if size42 then
13: prop:bObject ¼ label:words½1%þ ( ( ( þ label:words½size)2%;
14: else
15: prop:action¼ label:words½size%;
16: prop:bObject ¼ label:words½1%þ ( ( ( þ label:words½size)1%;
17: else if prop.style¼¼PREPOSITION_OF then
18: prop:action¼ label:words½1%þ ( ( ( þ label:words½pIndex)1%;
19: pPhrase¼ label:words½pIndexþ1%þ ( ( ( þ label:words½size%;
20: if pPhrase contains prepositions then
21: nIndex¼ index of the next preposition after pIndex;
22: prop:bObject ¼ label:words½pIndexþ1%

þ ( ( ( þ label:words½nIndex)1%;
23: else
24: prop:bObject ¼ label:words½pIndexþ1%

þ ( ( ( þ label:words½size%;
25: else if prop.style¼¼GERUND then
26: if prop.hasPrepositions then
27: label¼ label:words½1%þ ( ( ( þ label:words½prop:pIndex)1%;
28: if size¼¼1 then
29: action¼ label.words[1];
30: else
31: if label:words½1%þ label:words½2% is a phrasal verb then
32: prop:action¼ label:words½1%þ label:words½2%;
33: if size42 then
34: prop:bObject ¼ label:words½3%þ ( ( ( þ label:words½size%;
35: else
36: prop:action¼ label:words½1%;
37: prop:bObject ¼ label:words½2%þ ( ( ( þ label:words½size%;
38: else if prop.style¼¼DESCRIPTIVE then
39: for i¼ 1-size do
40: if label:words½i%:getTagðÞ¼¼VERB then
41: prop:action¼ label:words½i%;
42: break;
43: prop:bObject ¼ label:words½iþ1%þ ( ( ( þ label:words½size%;
44: return prop;

The algorithm starts with an analysis of labels following
noun phrase style (lines 4–16). It checks for an optional
prepositional phrase. If the label has a prepositional phrase,
the phrase is omitted and not studied any more. If the label
has only one word, e.g., Deployment or Classification, this
word is recognized as an action. Otherwise, the algorithm
checks if the last two words of the label constitute a phrasal
verb, for instance, set up and carry forward. If the first two
words are recognized as a phrasal verb, this verb is
perceived as an action. The rest of the label, if it exists, is
recognized as a business object (lines 11–13). If the phrasal
verb is not revealed, the last word is recognized as an action
while the rest as a business object (lines 15–16).

Algorithm 5 proceeds with the analysis of activity
labels of action-noun (of) style (lines 17–24). The label
part preceding preposition of is recognized as an action.
The label part between preposition of and the next
preposition is treated as a business object. Then, the
analysis of action-noun (ing) labels follows (lines 25–37).
Analysis of these labels resembles the analysis of labels of
noun phrase style. The key difference is that the action is
expected to appear in the beginning of the label while the
business object in the end.

Finally, Algorithm 5 concludes with the analysis of
descriptive labels (lines 38–43). In order to illustrate the
subsequent steps, we consider the two descriptive labels
Buyer informs seller to cancel and Checks process model.
While the first label specifies the role buyer for perform-
ing the given task, the second label only states the task
from a third person perspective. As already indicated by
the two examples, the verb position in descriptive labels
is not predefined. However, as descriptive labels were
assigned to its style using the Stanford Tagger, the
assigned tags can be used to identify the verb. Accord-
ingly, the first step of the derivation is to identify the
occurrence of the first verb tag in the label. Beginning
with the first word, each tag of the label is considered
(lines 39–42). If the current word carries a verb tag, it is
saved as action to the prop record and the loop is
terminated (lines 40–42). As the business object directly
follows the action, the remaining words are saved as
business object (line 43).

Algorithm 5 does not explicitly deal with irregular
action-noun labels and labels containing conjunctions.
Therefore, we provide an outlook on how such labels are
analyzed. For irregular labels we first identify all potential
actions in the label. Then we select the most likely action
by investigating surrounding events or activities. For
conjunction labels the first step is to identify, if the
conjunction coordinates actions or business objects. This
can be achieved using information about the labeling
style and the position of the conjunction in the label.
Afterwards, an algorithm similar to Algorithm 5 can be
used for deriving actions and business objects from
coordinated components of the label. Notice that a con-
junction may appear in the optional prepositional phrase,
as in Creation of proposal for sales and profit planning. In
this case the conjunction is ignored, as it does neither
coordinate actions nor business objects.

3.4. Verb–object label construction

Refactoring aims to transform an action-noun or a
descriptive label into a verb–object label, which signifies
the same action performed on the same business object.
The derivation of actions and business objects from
activity labels enables construction of labels in verb–
object style. In fact, after the analysis of the previous
steps the task becomes a straightforward concatenation of
a verb representing an action and a noun phrase repre-
senting a business object. Notice that the optional
prepositional phrase derived from the label at the deriva-
tion stage can be preserved in the verb–object label.
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To achieve this, the prepositional phrase is concatenated
to the label after the business object.

As it follows from the title, action-noun labels capture
actions with nouns. At the same time, a verb–object label
expects a verb to represent the action. To learn which
verb corresponds to the noun capturing the action, we
make use of nominalization—a linguistic operation of
producing a noun from another part of speech via the
addition of derivational affixes. In the context of this task
we are interested in nominalization relations between
nouns and verbs. Technically, nominalization relations
can be obtained from WordNet [42]. As an example,
consider action-noun label Invoice verification. The action
is given by verification and the business object by invoice.
Using nominalization we can learn that the action sig-
nified by the label is verify. Concatenation of the verb
verify and the business object invoice results in verb–
object label Verify invoice.

Once this phase is completed, we have refactored
labels in action-noun and descriptive style to verb–object
labels.

4. Empirical evaluation

To demonstrate the capability of our approach for
refactoring activity labels, we conduct an evaluation with
real-world data. Section 4.1 gives an overview of the
process model collections we utilize. The goal of the
evaluation is to learn how well the proposed algorithms
approximate a human interpretation and a manual refac-
toring of activity labels. Accordingly, we study different
dimensions of the evaluation. Section 4.2 investigates our
approach from a runtime performance perspective.
Section 4.3 shows the results of the recognition phase.
Section 4.4 compares these results to a simple adoption of
the Stanford Parser. Section 4.5 assesses the overall
improvement of the automatic refactoring. We also dis-
cuss cases of misclassification in this context.

4.1. Test collection demographics

In order to achieve a high external validity, we include
process model collections which vary in multiple dimen-
sions as, for instance, the domain, modeling language, and
the distribution of labeling styles. We designed a test
sample that includes three different real-world process
model collections and the human interpretation for each
activity label in it. Table 2 summarizes the main features
of the considered process model collections. They include:

" SAP reference model: The SAP Reference Model is a
model collection capturing the business processes
supported by the SAP R/3 system in its version from
the year 2000 [43, pp. 145–164]. The collection con-
tains in total 604 Event-driven Process Chains (EPCs)
organized in 29 functional branches of an enterprise
such as sales and accounting. This collection contains
mainly action-noun labels (81%).

" TelCo collection: The TelCo Collection contains a set of
388 ADONIS models from a large telecommunication

service provider. With regard to contents, the models
capture various aspects from the domain of customer
service management. The major share of labels in this
collection are following the verb–object style (81%).

" Signavio collection: The Signavio Collection consists of
518 process models created with the Business Process
Model and Notation (BPMN). The models cover diverse
domains and mainly stem from academic training.
Most of the labels are in verb–object style (74%).

With respect to the differences between the model
collections, we emphasize three dimensions of diversity:
labeling style distribution, modeling language, and mod-
eling experience.

The most significant feature of the considered collec-
tions is the opposed distribution of labeling styles. While
the majority of the activity labels in the SAP Reference
Model follow the action-noun style and only a small
share belongs to the verb–object style, the labeling style
distribution in the TelCo and Signavio Collection is the
inverted. This fact is important, as a small share of action-
noun labels requires the algorithm to work with a high
precision in terms of style recognition. Otherwise, verb–
object labels are mistakenly classified as action-noun and
consequently flawed in the refactoring phase. To demon-
strate the capability of our algorithm to cover both
extremes in terms of style distribution, the selected pro-
cess model collections can be considered to be well suited.

As the extensiveness of the information content varies
among different modeling languages, we also chose pro-
cess models which differ in this regard. EPCs contain, by
definition, numerous events which can be used for infer-
ring information or to validate assumptions about words
and their parts of speech in activity labels. By contrast, the
event information in BPMN and ADONIS models can be
very sparse. To show that our approach does not rely on
modeling language specific information, we cover three
different modeling languages.

When process models are created in practice, it cannot
be assumed that the involved modelers have extensive
modeling experience or can be considered modeling
experts. While the SAP Reference Model and the TelCo
collection were created in a professional environment, the
Signavio process model collection was mainly created by
students as course assignments. In order to cover the

Table 2
Details about used model collections.

Property SAP TelCo Signavio

Process models 604 388 518
AN labels 81% 8% 9%
VOS labels 11% 81% 74%
DES labels 0% 1% 6%
NA labels 8% 10% 11%

Activity labels 2433 4254 4097
Average no. of activities per model 4.03 10.96 7.91
Average no. words per label 3.50 3.83 3.66
Minimum no. of words per label 1 1 1
Maximum no. of words per label 12 16 15

Modeling language EPC ADONIS BPMN
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aforementioned real-world scenario of heterogeneous
modeling quality, we studied both professional and non-
professional process model collections.

By mixing the characteristics of the included process
model collections along these dimensions, we aim to
increase the external validity of the conclusions drawn
from our evaluation.

4.2. Performance results

Our refactoring technique is aimed to be part of a
modeling tool either as a batch service or an online help
indicating problems during the modeling process. There-
fore, the computation time should be adequately fast. For
this reason we investigate the response time for each
model collection in total, and also for one single activity.
We tested the execution on a MacBook Pro with a
2.26 GHz Intel Core Duo processor and 4 GB RAM, running
on Mac OS X 10.6.7 and Java Virtual Machine 1.5. In order
to exclude one-off setup times, we executed the algorithm
twice and measured the second run only.

Table 3 summarizes the results for the three process
model collections by showing the execution times for
recognition, refactoring and total processing for each of
the process model collections and for one single label on
average. From the numbers we can learn that execution
times for both recognition and refactoring depend upon
the labeling style distribution of the analyzed process
model collections. In particular, the results for the SAP
Reference Model indicate that a great share of action-
noun labels entails longer execution times. Considering
our recognition algorithm, this is not surprising as the
detection of action-noun styles and the refactoring of
action-noun labels require additional computation steps.
Nevertheless, we observe that the algorithm computes
refactored labels rapidly. Even for the SAP Reference
Model, which requires the most rework because of a great
share of action-noun labels, the average execution time
for one label is approximately 14 ms. Consequently,
within 1 s a process model with about 71 activity labels
can be refactored completely. Hence, we consider our
algorithm to be well suited in terms of execution time for
an online help during modeling.

4.3. Recognition results

We assess the recognition performance of our algo-
rithm using precision, recall, and f-measure as metrics. In
our context the precision value is the number of correctly

recognized labels of a given style divided by the total
number of labels retrieved by the algorithm. The recall is
the number of correctly recognized labels of a given style
divided by the total number of labels belonging to this
style. As our goal is to obtain considerable recall and
precision values at the same time, we also compute the
f-measure, the harmonic mean of precision and recall [44].

In order to be able to assess the computed results, we
created a benchmark using the human interpretations of
the comprised activity labels. The human interpretation is
captured by two mappings: one mapping from an activity
label to a set of corresponding actions and another
mapping from an activity label to a set of business objects.
This information is stored in a spreadsheet, which can
then be read by an application in the evaluation phase.

Within the evaluation we compared:

1. recognition of labeling styles by the algorithm and by
humans;

2. derivation of actions and business objects by the
algorithm and by humans.

Fig. 3 summarizes the results of all four phases for
each collection. The results show that the recognition
algorithm works satisfactory. After the last phase of the
algorithm each f-measure is higher than 70%, while the
average f-measure is above 80%. However, we observe
considerable differences among the f-measures within a
single and also among the different collections. For
instance, for the SAP Reference Model, we observe a
comparatively moderate verb–object recognition (70%)
but a significantly high action-noun recognition (94%).
By contrast, for the TelCo and the Signavio Collection the
verb–object recognition shows the higher value.

If we include the style distribution of the collections
into our consideration, the details of the results become
more transparent. For instance, the f-measure for the
verb–object recognition in the SAP Reference Model
results from the small amount of verb–object labels in
the collection. As only 220 labels belong to this style, an
action-noun label misclassified to a verb–object label
significantly affects the recognition precision of the
verb–object style. For the TelCo and the Signavio collec-
tions it is the other way around, as a relatively small share
of action-noun labels has to be recognized precisely.

These distribution imbalances asymmetrically impact
the eventual refactoring. In case of a verb–object domi-
nant style distribution as in the TelCo Collection, some of
the action-noun labels are misclassified as verb–object

Table 3
Performance results.

Period SAP TelCo Signavio

Whole collection Recognition (ms) 26,209 15,237 26,214
Refactoring (ms) 7989 4596 6205
Total (ms) 34,198 19,833 65,477

Label (average) Recognition (ms) 10.77 3.58 6.40
Refactoring (ms) 3.28 1.08 1.51
Total (ms) 14.06 4.66 6.73
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labels because of the lower verb–object precision. As a
consequence, they are not considered for refactoring. By
contrast, if a verb–object label is misclassified, it becomes
erroneously subject to refactoring. Hence, the precision
for the action-noun recognition has a greater impact on
the refactoring outcome. These precision values range
from 85% to 95% in phase 1 and from 71% to 93% in phase
4 for the different collections in the different phases (not
visualized separately).

Besides the final results, the diagrams also highlight
the effect of the four phases. While the recognition of the
descriptive style is purely based on the label structure and
thus unchanged throughout the phases, the verb–object
and action recognition depends upon the phase. However,
the curve also indicates differences in this dependency.
Whereas the f-measure for the verb–object recognition is
strictly increasing in all the three model collections, the
action-noun f-measure partially decreases, as for instance
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Fig. 3. Results of recognition phase. (a) SAP reference model. (b) TelCo collection. (c) Signavio collection.
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in phase 3 in the TelCo and Signavio Collection. This is
mainly caused by the inverse development of recall and
precision. To assign ambiguous labels to a certain style,
increasingly insecure decisions are made. In this way, the
recall can be increased while precision decreases. Fig. 4
illustrates this effect by presenting the disaggregated
f-measures for the TelCo and Signavio collections. It
reveals that the action-noun recall for the TelCo collection
already started with a quite high value of 74% and a
considerable precision of 85%. Due to the comparable
labeling style distribution similar results can be observed
for the Signavio collection which starts with an action-
noun recall of 79% and a precision of 86%. Nevertheless,
not all ambiguous labels are assigned to a style in this
phase. For both collections the subsequent phases two
and three show an increase of the verb–object recall as
well as the significant increase in the action-noun recall in
phase four, which coincide with lower precision values.
Due to the small size of the action-noun label share, the
change of the action-noun precision is higher than the
verb–object precision. These results illustrate the trade-
off between precision and recall. Nevertheless, the phase
structure of our approach offers a flexible way to define
preferences for precision or recall depending on the
considered application. If a decision for all labels is
required, all four phases have to be executed. If the usage
scenario demands high precision, the algorithm may be
limited to one of the first three phases.

4.4. Stanford Parser recognition results

The results presented so far demonstrate a good
performance of the proposed technique. However, for
assessing its merit in comparison to a naive application
of natural language parsing techniques, we conducted the
labeling style recognition experiment using the Stanford
Parser. For this experiment we provided the Stanford
Parser with all activity labels comprised in the process
model collections. Based on its parsing result, we decided
upon the style allocation of the label. If the parser
recognized a third person verb, the label was allocated
to the descriptive style. In any other case we only con-
sidered the tag of the first word. If the parser assigned a
verb tag, we allocated the label to the verb–object style. If
the parser assigned a noun tag, we consequently allocated

the label to the action-noun style. Fig. 5 shows the results
for the simple application of the Stanford Parser.

If the parser was able to correctly recognize the under-
lying label structures, we could expect a precise classifica-
tion. However, the results reveal the opposite. This fact can
be explained by the combination of the algorithmic
approach of the Stanford Parser and the improper input of
activity labels. The Stanford Parser determines the part of
speech of a certain word based on the surrounding words,
and computes the most likely part of speech using a pre-
tagged set of natural language texts, for instance, the Penn
Treebank—a tagged collection of the Wall Street Journal
articles [38]. As many activity labels are rather short and
action-noun labels do not represent proper sentences, we
cannot expect that such text fragments can be disambig-
uated using the Penn Treebank.

Looking into the details, we observe high recall values for
the descriptive and action-noun style recognition. Taking
the approach of the Stanford Parser into consideration, this
is a logical outcome. As descriptive style labels represent
proper sentences, they can be adequately analyzed by the
parser. The high recall for action-noun labels results from
the tendency of the parser to assign noun tags even if the a
verb tag would have been theoretically possible. Hence, the
majority of the labels are assigned to the action-noun style
and the recall value is, therefore, high. As most labels in the
SAP Reference Model comply with the action-noun style, we
observe a high corresponding precision. Nevertheless, the
verb–object recall and each of the precision values among
the other collections reveal that the sole application of
the Stanford Parser would lead to inaccurate categoriza-
tion results, with a significant number of labels being
corrupted in the refactoring phase. We conclude that our
labeling style recognition performs significantly better than
the naive adoption of standard NLP tools, essentially
because our approach is tailored to the specifics of short
activity labels.

4.5. Refactoring results

To evaluate the quality of the final refactoring, we
consider two aspects: first, that labels are correctly refac-
tored, and second, that labels can also be erroneously
refactored. As a baseline for this discussion, we consider the
set of action-noun labels (labelsAN) and the set of descriptive
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labels (labelsDES). Together they define the set of all labels that
should be refactored, i.e., labelsANþDES ¼ labelsAN [ labelsDES.
Furthermore, we consider the set of labels that are actually
refactored. These are either correctly or erroneously
refactored. We write labelsr ¼ labelsr)correct [ labelsr)erroneous.
It follows that labelsr)correct ¼ labelsr \ labelsANþDES and
labelsr)erroneous ¼ labelsr\labelsANþDES. Based on these sets we
introduce twometrics: refactoring gain and refactoring effect.
While the refactoring gain captures only the relative share of
correctly refactored labels, the refactoring effect takes into
account that labels can be erroneously refactored. We con-
sider it to be important that both metrics yield satisfying
results. On the one hand, we aim to maximize the share of
mediocre labels that are refactored (refactoring gain). On the
other hand, we also want to minimize the damage caused by
the erroneous refactoring of good labels (refactoring effect)

Refactoring gain RG¼
9labelsr)correct9

9labelsAN [ labelsDES9
ð1Þ

Refactoring effect RE¼
9labelsr)correct9)9labelsr)erroneous9

9labelsr9
ð2Þ

The refactoring gain RG is the share of labels which has
been correctly refactored in relation to the labels to be
refactored, i.e., action-noun and descriptive labels. This
metric ranges between 0 (no label is correctly refactored)
and 1 (all required labels are correctly refactored). The
refactoring effect RE takes into account the damage of
misclassification. It ranges from )1 (all refactored labels
are erroneous) and 1 (all labels have been correctly
refactored).

Fig. 6 shows the results for both metrics. In Fig. 6(a) we
can see that the refactoring gain ranges between 64% and
77% in the different phases for the three collections. The
growth of the curves reflects a corresponding increase in
the recall of action-noun labels. For all the three collec-
tions about 75% of the action-noun and descriptive labels
have been properly refactored into verb–object labels. In
order to assess the overall refactoring effect, we balance
correct and erroneous refactorings.

Following on this analysis, we investigated the cases of
misclassification. Altogether, we observe 14% erroneously
refactored action-noun labels for the SAP Reference

Model, 11% for the TelCo Collection and 15% for the
Signavio Collection. The sources for this incorrect refac-
toring can be divided into three classes:

" Compound words: In some cases the algorithm does
not recognize compound words and treats them as
isolated words. For instance, consider the label New
User Registration. In this label we find the compound
noun new user and the action register. However, the
algorithm has only limited contextual information
available to determine whether new is an adjective of
the business object user or an adjective characterizing
the nominalized action registration, which should be
transformed to an adverbial conjunct in the refactored
label. Although this case is quite clear to humans,
the algorithm determines a refactored label as Register
user newly and not Register new user. By contrast, if we
examine the label Informal Sales Conversation it
becomes clear why this decision is non-trivial. Both
labels have the same structure. Although the adjective
relates to the business object in the first case, it is used
to qualify the action in the latter case. Hence, the label
does not require the process participant to converse
about informal sales, but to informally converse about
sales.

" Adjective-noun ambiguity: We have already discussed
the problem of zero-derivation ambiguity between
nouns and verbs. However, the ambiguity problem
also arises between nouns and adjectives. This
becomes critical if we try to identify adjectives which
are specifying verbs, since the former must be trans-
formed into adverbial conjuncts in the refactored label.
For instance, in the label Good Receipt we apparently
face the receipt of goods. However, for the algorithm
it is not possible to disambiguate good. Hence, the
refactoring of the label is not determined with Receive
goods but with Receive well due to misinterpretation.

" Irregular labels: Although this problem only applies to a
minor share, the investigated collections also contain
labels following an arbitrary labeling style. For these
labels such as LIFO: Group Formation: Change it is
challenging to infer the action correctly and also to
agree on how an adequate refactoring of these labels
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should be defined. Therefore, many of the refactoring
results of these irregular labels have been assessed to
be improper, either because the action was not cor-
rectly inferred or because the structure of the refac-
tored label was not satisfying.

Fig. 7 illustrates the distribution of the introduced error
classes among the three considered model collections. It
shows that compound words are the most frequent error
source. The share of labels being erroneously refactored
due to compound words ranges from 53% in the TelCo
collection to 60% in the SAP Reference Model. However, in
the three model collections also the adjective-noun-ambi-
guity and the irregular labels affect the overall refactoring
result. Hence, in order to overcome these problems in the
future, we propose the following strategy.

All the three error classes are based on the problem of
ambiguity: for one label, theoretically two or even more
interpretations are possible. In order to resolve these
ambiguities we suggest the incorporation of a text corpus.
Such a corpus can be consulted to check the frequency of
the different refactoring outcomes. As a result, the most
likely solution can be identified. As an example, consider
the above introduced label New User Registration. If we
look up the words new user, we will most likely get more
matches than if we search for the word combination user
newly. Hence, based on the frequency of the word combi-
nation in the corpus, we can identify action and business
object and hence obtain a proper refactoring. The same
strategy can be applied for irregular labels. As the lack of
structure permits the reliable determination of action and
business object, all possible action—business object com-
binations must be identified. Then, the corpus can be
consulted to determine the most likely combination. An
additional solution is the involvement of the user. Being
aware of the fact that a very insecure decision will be
made, the feedback of the user can incorporated to further
improve the quality of the refactoring.

Although the discussed error sources negatively
affected the overall refactoring effect, the share of noun
labels which suffered from these problems was quite
small. If the algorithm is used to point to potential
problems, these shortcomings will not affect the modeling
results as the user can simply correct the interpretation of
the algorithm.

Turning to the refactoring effect, we observe the
positive effect the algorithm creates in the process model

collection. Consequently, this metric also includes the
drawback that some verb–object labels might be flawed
because of a wrong classification. Thus, for instance the
verb–object label Plan Reconciliation is erroneously refac-
tored into Reconcile Plan. Although these cases reduce the
positive effect of our refactoring, only a small share of the
labels is affected. This is also reflected by the overall
refactoring gain. The final numbers after phase 4 amount
to 50% for the SAP Reference Model, 49% for the TelCo
models and 47% for the Signavio collection. Thereby, the
development of the metric among the different collec-
tions is slightly different. While the refactoring effect for
the SAP collections starts with 51% and, hence, remains
constant, it decreases by 11 and 10 percentage points in
the Telco and the Signavio collections. This development
can be explained by the combination of the phase concept
of our approach and the different labeling style distribu-
tion in the affected model collections. Concerning the
phases, we can generally state that the certainty of the
classification declines with each phase. Thus, if the algo-
rithm is applied on a model collection with only a few
action-noun labels, the number of erroneously refactored
labels may exceed the number of correctly refactored
labels and lead to an overall decrease of the refactoring
effect. However, due to the introduced phase concept the
trade off between a high refactoring gain and a suitable
refactoring effect can be explicitly reached by reasonably
defining the number of phases. Altogether, we can state
that the refactoring gain and effect show that our
approach significantly improves the labeling quality in
the considered process models collections. Although some
labels may be flawed, these can be easily and quickly
corrected by the user as the amount is relatively small.

In summary, it can be stated that the refactoring
approach performs satisfactory on the three model collec-
tions. A great share of labels can be corrected by the help
of the algorithm and only a manageable amount of labels
requires further inspection.

5. Related work

The work presented in this paper relates to research on
applying natural language processing techniques to pro-
cess modeling. We focus on three major aspects of this
area, namely activity label quality, process model match-
ing, and process model generation.

The benefits of a particular style of labeling have been
discussed in practice. Labels composed of verbs followed
by objects are promoted in [45,26,46]. Comparable guide-
lines have been defined for use cases in requirements
engineering [47]. The actual advantage in terms of clarity
is demonstrated in an experiment, which contrasts verb–
object labels with action-noun labels in process models
from practice [11]. Moreover, shorter labels have been
shown to yield better process model comprehension in a
correlational study [48], which is line with recommenda-
tions on sentence length [49,50]. These findings provide
the foundation for design-oriented contributions on uti-
lizing natural language techniques for process models.
Delfmann et al. employed standard grammar parsers for
checking naming conventions [51] and for auto-
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completion [12]. Gruhn and Laue [52] used linguistic
analysis of activity labels for finding semantic errors,
while Peters and Weidlich [53] examine the potential to
extract glossaries from process model collections. Also the
recognition of labeling styles has been inspected in prior
publications [29,15,13]. This paper informs these works
with a parsing technique that is tailored to the specifics of
activity labels. Our evaluation demonstrates the limita-
tions of using off-the-shelf parsers on labels that are not
proper sentences. Our extensive evaluation with real-
world process model collections provides detailed insight
into the parameters that influence the refactoring result.
In this way, our contribution is of fundamental impor-
tance to the area of activity label analysis.

Linguistic analysis of activity labels is an import step in
matching business process models, an area dedicated to
finding automatically a set of correspondences between
semantically equivalent activities in two different process
models. The identification of such correspondences is a
prerequisite for merging and integrating process models
[54–56]. Inspired by techniques on schema and ontology
matching [57], there has been a series of works discussing
the specifics of aligning and comparing process models. See
Dijkman et al. [58] for an overview. Some of these works
assume that an ontology exists for matching the labels
[59–61]. Also techniques for semantic annotation have been
proposed [62–65]. An intrinsic problem of matching busi-
ness process models is the complexity of the search space
once 1:n matches are investigated [66–68]. Our work
complements this stream of research. Our recognition tech-
nique has the potential to improve matchers significantly in
terms of precision, e.g., when only matches between actions
and between business objects are considered.

Natural language processing techniques are not only
important for analyzing process models, but also for
constructing them. There have been various approaches
by different groups. A group from Klagenfurt has been
working on parsing German text into a generic meta-
model, and semi-automatically generating UML activity
diagrams from its content [69,70]. A fully automated
approach is presented in Yue et al. [71], but it assumes
the text to follow the conventions of use-case descrip-
tions. A group from Rio de Janeiro works with group
stories provided in Portuguese for generating BPMN
models [72]. Syntax parsing and textual patterns are used
to create BPMN models in the approach of the R-BPD
toolkit [73,74]. Further approaches on generating BPMN
from text have been presented [75–78]. Our approach is
informative to these works, as it provides the basis for a
text-to-model model-to-text round-tripping. The chal-
lenges of identifying the components of an activity label
are essential for building natural language text that
appears to be natural. While model generation faces
challenges such as anaphora resolution [78], the problem
for model-to-text generation will be the other way around
to introduce anaphora in an appropriate way.

6. Conclusion

In this paper we addressed the problem of activity
label quality in business process models. We designed a

technique for the recognition of labeling styles, and
the automatic refactoring of labels of undesirable style.
More specifically, we developed a parsing algorithm fit
to the particularities of activity labels, and utilized stan-
dard natural language tools like WordNet and the
Stanford Parser where appropriate. Using three samples
of business process model collections from practice
with differing style distributions, we were able to demon-
strate the applicability of our technique. In comparison
to a straight-forward application of standard tools
(f-measure below 0.20 for certain collections), our tech-
nique provided much more stable results (between
0.65 and 0.95 for the different styles in different collec-
tions). As a result, the refactoring gain for the collections
of our sample ranges from 64% to 77%. The overall
refactoring effect is positive with roughly 0.5 on a scale
from )1 to þ1.

The results we achieved demonstrate the potential of
utilizing natural language processing techniques for qual-
ity assurance of process models. Our work has to be
reflected from the perspective of some limitations. Up
until now, we focused on activity labels in English
language. Therefore, the results are bound to the specifics
of this language. We are currently experimenting with
other languages, namely German and Dutch. A prelimin-
ary observation from these tests is that label parsing can
be done more reliably for the latter languages due to a
richer morphology of verb forms. Part of speech ambi-
guities like zero derivation in English are in those lan-
guages much less frequent, such that the parsing can
identify actions and business objects more precisely.
Languages like German are also easier to parse due to
the fact that compounds are concatenated into a single
word. In the future work, we aim to quantitatively
measure the effect of these language differences using
German and Dutch process model collections.

The results of our analysis are also bound to the specifics
of the three process model collections that we used. They are
not representative in a statistical sense. We tried to avoid a
bias in whatever aspect by selecting collections with diverse
characteristics in various dimensions. We have included
collections created by modelers of different degrees of
expertise, using different graph-based process modeling
languages and different modeling tools, having different
skewness in their distribution of labeling styles. Altogether,
more than 10,000 activity labels were used in our evaluation.
This provides us with confidence that the results reflect the
potential of our technique to be applied in practice. We are
currently discussing with a vendor who aims to design a
labeling convention checking in their process modeling tool.
This will help us to investigate our technique from a usability
perspective in the future research.
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