
Towards the Automated Annotation of
Process Models

Henrik Leopold1, Christian Meilicke2, Michael Fellmann3, Fabian Pittke4,
Heiner Stuckenschmidt2, and Jan Mendling4

1 VU University Amsterdam,
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

h.leopold@vu.nl
2 Universität Mannheim, 68159 Mannheim, Germany
christian|heiner@informatik.uni-mannheim.de

3 Universität Osnabrück, Katharinenstr. 3, 49074 Osnabrück, Germany
michael.fellmann@uni-osnabrueck.de

4 WU Vienna, Welthandelsplatz 1, 1020 Vienna, Austria
fabian.pittke|jan.mendling@wu.ac.at

Abstract. Many techniques for the advanced analysis of process models
build on the annotation of process models with elements from predefined
vocabularies such as taxonomies. However, the manual annotation of
process models is cumbersome and sometimes even hardly manageable
taking the size of taxonomies into account. In this paper, we present
the first approach for automatically annotating process models with
the concepts of a taxonomy. Our approach builds on the corpus-based
method of second-order similarity, different similarity functions, and a
Markov Logic formalization. An evaluation with a set of 12 process models
consisting of 148 activities and the PCF taxonomy consisting of 1,131
concepts demonstrates that our approach produces satisfying results.
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1 Introduction

Nowadays, many organizations use business process models for documenting and
improving their operations. However, only a few have recognized the full potential
their process models offer. In particular semantic technologies facilitate a wide
range of possibilities that go beyond the documentation of business operations
[27]. For example, there are techniques available that use process models for
checking business process compliance [9,22], for checking the interoperability
of business processes [10], and for discovering semantic weaknesses in business
processes [2]. However, the limitation of all these approaches is that they build
on an existing annotation of the process model activities, for instance, with
concepts from a taxonomy. Recognizing this drawback, user-friendly approaches
for semantic annotation have been proposed [4]. Still, the manual effort that is
required for annotating process models is considerable and, in many cases, even
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hardly manageable taking into account that taxonomies often contain hundreds
or even thousands of concepts.

In this paper, we present the first approach for automatically annotating
process models with the concepts of a taxonomy. At this stage, we focus on
activity-based taxonomies such as the Supply-Chain Operations Reference-model
(SCOR) [24], the MIT process handbook [17], and the Process Classification
Framework (PCF) [1]. To this end, we define an approach that combines semantic
similarity measurement with probabilistic optimization. In particular, we use
different types of similarity between the process model and the taxonomy as well
as the distance between the taxonomy concepts to guide the matching with a
Markov Logic formalization. In contrast to prior approaches in the domain of
process modeling, we do not measure the similarity using WordNet, but build
on the more powerful corpus-based approach of second-order similarity. An
evaluation of our approach with a set of 12 process models consisting of 148
activities and the PCF taxonomy with 1,131 concepts shows that our technique
performs significantly better than a naive baseline and indeed produces satisfying
results.

The rest of the paper is structured as follows. Section 2 illustrates the problem
of automatically annotating process models with taxonomy concepts. Section
3 introduces the similarity functions we use for computing the input for our
probabilistic optimization. Section 4 introduces Markov Logic Networks and
defines the probabilistic optimization problem using a Markov Logic formalization.
Section 5 presents the evaluation of our approach. Section 6 discusses related
work before Section 7 concludes the paper.

2 Problem Illustration

The goal of this paper is to present an approach for the automated annotation
of process models with the concepts of an activity-based taxonomy. It builds on
two types of input: a process model P consisting of a set of activities Ap and an
activity taxonomy T , which is specified as follows:

Definition 1 (Activity Taxonomy). An activity taxonomy is a tuple T =
(At, r, H) such that

– At is a finite and non-empty set of activities. We refer to them as concepts.
– r ∈ A represents the taxonomy root.
– H ⊆ A× (A \ {r}) is the set of parent-child relationships such that (a1, a2)
∈ H if a1 is a parent of a2.

– H is an acyclic and coherent relation such that each concept a ∈ A \ {r} has
exactly one direct parent.

We further use C = {a | (r, a) ∈ H} to refer to the direct children of the
taxonomy root r. They represent the roots of what we refer to as taxonomy
categories. The function c(a) = {ca | ca ∈ C ∧ (ca, a) ∈ H+} returns the category
a concept a ∈ At belongs to. Note that the taxonomy categories are disjoint and,
hence, |c(a)| = 1.
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      6.2.3.2  Interview candidates 
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      … 

  … 
    … 

Fig. 1. Correspondences between an exemplary process model and the PCF taxonomy

The annotation of a process model P with the concepts of an activity taxonomy
T are captured by the relation A : Ap × At. An element (ap, at) ∈ A defines
that the activity ap is annotated with the concept at, i.e., they both represent
similar semantics. Note that each activity is annotated with at most one concept.
However, one concept can be used as annotation for several activities.

Figure 1 illustrates the challenges associated with the automated annotation
by showing a simple hiring process and its annotations with the concepts from the
PCF taxonomy. In total, the process consists of five activities. First, the job offer is
distributed. Afterwards, the records of the applicant are checked and an interview
is conducted. Based on the result of the interview, the applicant is either rejected
or accepted. Once the corresponding letter was sent, the process is finished. The
grey shades visualize the annotations of the activities of the process model with
the taxonomy concepts. We observe that all activities belong to the category
Develop and Manage Human Capital. Considering the annotations in more detail,
it becomes clear that the automatic identification of these annotations is by
no means trivial. While the activity Distribute job offer and the corresponding
concept Post job requisition at least share the common word job, the connection
between Check records of applicants and Identify and deploy candidate selection
tools is purely semantic. A similar situation can be observed for the activities
Send letter of rejection and Send letter of acceptance, which are both annotated
with the concept Select and reject candidates.
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Beyond the challenge of recognizing semantic relationships between activities
and concepts, we have to take the large number of taxonomy concepts into
account. In total, version 5.2 of the PCF taxonomy contains 1,131 concepts.
While the exemplary process from Figure 1 only contains activities relating to
concepts from the same category, this is no justifiable assumption for a usable
approach. In practice, we may encounter cross-sectional processes, which are
related to several categories. Hence, we have to consider all concepts from the
taxonomy as potential annotation candidates.

To the best of our knowledge, there is currently no technique available that is
capable of automatically annotating process model activities with the concepts
of a taxonomy. Hence, we define such an approach in the subsequent sections.

3 Similarity between Process Models and Taxonomies

In this section, we introduce the similarity functions we use for generating the
input for our optimization problem. In total, we define three separate functions:
a function for capturing the similarity between activities and concepts, a function
for capturing the similarity between the process model and a taxonomy category,
and a distance cost function capturing the distance between taxonomy concepts.

3.1 Similarity between Activities and Taxonomy Concepts

To measure the similarity between a process model activity and a taxonomy
concept, we automatically decompose them into their semantic components. As
pointed out in [18], activities can be characterized by three components: an action,
a business object on which the action is performed, and an optional additional
information fragment that is providing further details. As an example, consider
the process model activity Perform interview with employee. It consists of the
action perform, the business object interview, and the additional information
fragment with employee. The same procedure can be applied to the concepts of
an activity taxonomy. In order to accomplish this decomposition in an automated
way, we employ the technique defined in [15].

Building on the decomposition, we compute the semantic similarity between
the actions, business objects, and additional information fragments of the con-
sidered activity-concept pair. A challenge in this context is the usage of specific
terminology from business settings, which is often not fully captured by standard
natural language tools such as WordNet [19]. Hence, we determine the similarity
between two components using a corpus-based method called second-order sim-
ilarity [11]. The approach of second-order similarity is based on the statistical
analysis of co-occurrences in large text collections and has been implemented
in several tools such as NLS [5] or DISCO [13]. In comparison to WordNet,
second-order similarity has the advantage that it is not restricted to a set of
manually predefined term relations and, hence, is more powerful for our purposes.
In order to calculate the semantic similarity between a process model activity ap
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and an taxonomy concept at, we introduce three functions: a component simi-
larity function cpsim, a coverage function cov, and a activity-concept similarity
function sim, combining the latter two into a final result.

The function cpsim calculates the semantic similarity between two components
cp1 and cp2 derived from an activity-concept pair. In general, the second-order
similarity simSO is returned. In case one or both of the concepts represent an
empty string, cpsim returns zero.

cpsim(cp1, cp2) =

{
0 if cp1 = ε ∨ cp2 = ε
simSO(cp1, cp2) if cp1 6= ε ∧ cp2 6= ε

(1)

The coverage function cov is used to determine the number of components of
an activity or a concept a ∈ Ap ∪At. Note that the index act in the definition
denotes an action, bo a business object and add an additional information
fragment.

cov(a) = |{cp | cp 6= ε ∧ cp ∈ aact, abo, aadd}| (2)

To combine the similarity results from the previously defined functions, we
introduce the function sim. It calculates the arithmetic mean of the similarity
values for action, business object, and the additional information fragment. This
is accomplished by dividing the sum of cpsimact, cpsimbo and cpsimadd by the
maximum coverage among the input activity-concept pair ap ∈ Ap and at ∈ At.
As a result, we obtain the overall semantic similarity for an activity-concept pair.

sim(ap, at) =
cpsimact(ap, at) + cpsimbo(ap, at) + cpsimadd(ap, at)

arg max
a ∈ {ap,at}

cov(a)
(3)

By calculating sim for every activity-concept pair, we obtain a set of similarity
values. These values form the basis for our automatic annotation approach.

3.2 Similarity between Process Models and Taxonomy Categories

For activities containing frequently occurring words the sole consideration of
the similarity function sim may not be sufficient for identifying the best fitting
concept. As an example, consider the activity Develop strategy, whose business
object strategy occurs in six categories of the PCF taxonomy. In such a situation,
it would be helpful to quantify the similarity between the entire process model
and the different taxonomy categories. The resulting values could complement
the individual similarity scores derived from sim in order to truly identify the
best fitting candidate.

To quantify the similarity between a process model and a taxonomy category,
we adopt the general idea of term frequency-inverse document frequency (tf-idf)
and the vector space model from the domain of information retrieval [23] and
modify them to meet the characteristics of our problem. Using the tf-idf it is
possible to determine the discriminative power of a word. In the context of a
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taxonomy, the tf-idf assigns high weights to words that frequently occur in a
particular category but rarely in the entire taxonomy. Contrarily, words that
occur in many or even all categories have hardly any discriminative power and
hence receive a low weight. Let Ac denote the concepts from a category c ∈ C
and f(w, c) the frequency of a word w among the concepts of c. Then, the tf-idf
is defined as follows:

tf -idf(w, c) = f(w, c)× log |C|
|c ∈ C : w ∈ Ac|

(4)

Based on the tf-idf values, we can create a vector representation for the entire
process model as well as for taxonomy categories. Therefore, we calculate the
tf-idf values for each word from Ap and Ac and store them in the vectors vp
and vc. As a result, we obtain a vector representation of the process model and
the category in a vector space. Using the cosine similarity, it is now possible
to measure the distance between these vectors and to quantify the similarity
between a process model and a category. Accordingly, we introduce the similarity
function rel, which we define as follows:

rel(c) = cos(vp, vc) =
vp · vc
||vp|| ||vc||

=

n∑
i=1

vpi × vci√
n∑

i=1

(vpi)
2 ×

√
n∑

i=1

(vci)2

(5)

By calculating rel for each category c ∈ C, we receive a set of similarity values
which complement the similarity values from sim.

3.3 Distance Costs between Taxonomy Concepts

Besides the semantic perspective, we also need to take the structure of the process
model and the taxonomy into account. Assuming that process models describe
the underlying process in a rather coherent fashion, we would not expect large
“leaps” between the annotations of two neighboring activities. For instance, we
would assume that two subsequent activities are rather annotated with concepts
6.2.1 and 6.2.6 than with 7.1 and 3.2.1.5. To penalize such leaps, we introduce
a distance cost function dc based on concept similarity introduced by Wu and
Palmer [28]. It quantifies the distance between two concepts based on the graph
structure of the taxonomy and their least common superconcept as. Given two
concepts a1, a2 ∈ At, we define dc as follows:

dc(a1, a2) =
(
− 0.5 +

2×N3

N1 +N2 + 2×N3

)
× 2 (6)

where N1 is the number of concepts on the path from a1 to as, N2 is the
number of concepts on the path from a2 to as, and N3 is the number of concepts
on the path from as to the taxonomy root r.

By calculating dc for each concept pair, we obtain a set of distance cost
values in the interval [-1,1], i.e., only big leaps are penalized. Together with the
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previously introduced similarity values they form the input for our probabilistic
annotation model.

4 Using Markov Logic for Automatic Annotation

Markov Logic (ML) is a formalism that combines first order logic with undirected
probabilistic models, i.e., Markov Networks [21]. A Markov Logic formalization
of a given problem consists of a set of weighted and unweighted logical formulae.
These formulae describe observations relevant to the concrete problem instance
and general constraints that have to hold for each instance of the problem
class. By replacing variables with concrete values, which is called grounding, it
is possible to transform the Markov Logic formalization into a Markov Logic
Network. For technical details we refer to [21].

Two types of inference can be applied to a Markov Logic Network, known as
marginal inference and maximum a-posteriori (MAP) inference. In the context
of our work, we are interested in MAP inference. MAP inference computes the
most probable assignment of truth values to the ground atoms of the given
formalization. The MAP state, which is the result of applying MAP inference,
corresponds in our setting to the most probable annotation of activities with
concepts. Since the underlying probabilistic model is log linear, the MAP state is
the solution which is maximal with respect to the sum of weights attached to
the formulae.

In the previous section, we introduced functions for measuring similarity,
relatedness, and distance costs. To incorporate these functions into our Markov
Logic formalization, we introduce a predicate for two of these functions and weigh
each grounded atom with the value that results from applying the corresponding
similarity function. For the sake of simplicity, we use the same names for these
predicates as introduced for the corresponding similarity measures, i.e., we use

– sim(ap, at) to express that activity ap and concept at are similar.
– dc(at, a

′
t) to express that at and a′t are located close to each other.

These predicates are used to generate a comprehensive set of weighted atoms
by computing all possible groundings. Additionally, we add unweighted formulae
that describe the sequence flow in the given process model and the structure of
the taxonomy. In particular, we use the predicates

– suc(ap, a
′
p) to express that activity ap directly succeeds activity a′p,

– cat(c, at) to express that at belongs to the category c, i.e., c(at) = c.

Now we define the constraints that relate the given evidence to the annotate
predicate. The groundings of the annotate predicate correspond to the solution of
the annotation problem. First of all, we add a constraint that enforces to annotate
each activity with only one concept, i.e., we define the predicate annotate to be
functional.

〈annotate(ap, at) ∧ annotate(ap, a′t)→ at = a′t, ∞〉 (7)
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Note that we represent a weighted formula as a pair, where the first element is the
formula itself and the second element is the associated weight. Using∞ as weight
we refer to a hard (unweighted) formula that has to be true in every possible
world. Now we link the activity-concept similarity to the annotate predicate.

〈sim(ap, at)→ annotate(ap, at), ∞〉 (8)

This formula means that the weight attached to sim(ap, at) is added only to the
objective of our optimization problem if annotate(ap, at) is part of the solution.
The model we defined so far will create a functional mapping as MAP state that
is optimal with respect to the similarity weights given in our evidence with the
guarantee that the mapping is functional. We extend this model by taking the
relatedness score into account. For each category c we add one weighted formula
using the following schema.

〈cat(c, at) ∧ annotate(ap, at), rel(c)〉 (9)

If c is the category to which at belongs to and if ap is annotated with at, the
relevance score rel(c) of category c is added to the objective. By adding these
weighted rules, we ensure that concepts from a category that are more relevant
with respect to the given process model are preferred over concepts from less
relevant categories.

Finally, we want to penalize pairs of annotations where two consecutive
activities ap and a′p are annotated with two concepts at and a′t that are located
at different places in the taxonomy. Since ap and are a′p are directly connected
by a sequence flow, we would expect that their counterparts are located closely
to each other in the taxonomy. The following constraint enforces that we have to
add the distance cost, which is the weight associated to dc(at, a

′
t), whenever two

consecutive activities ap and a′p are annotated with at and a′t.

〈annotate(ap, at) ∧ annotate(a′p, a′t) ∧ suc(ap, a′p)→ dc(at, a
′
t),∞〉 (10)

The positive impact of this constraint can be best explained with the help
of Figure 1. Suppose that the concepts 6.2.3.2 and 6.1.2.3 have similarly high
similarity values for the activity Conduct Interview with Applicant. Further
suppose that our approach detected a high similarity between Send letter of
rejection and concept 6.2.3.4. Due to Formula 10, 6.2.3.2 will now be preferred
over 6.1.2.3 as annotation for Conduct Interview with Applicant, because there is
a large distance between 6.1.2.3 and 6.2.3.4, while 6.2.3.2 and 6.2.3.4 are located
close to each other. This illustrates nicely that our approach solves the annotation
problem as a whole taking interdependencies between potential annotations into
account.

5 Evaluation

To demonstrate the applicability of our approach, we conduct an evaluation with
a set of manually annotated process models and the PCF taxonomy. The goal of
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the evaluation is to learn how well our approach can approximate the manual
annotation. Section 5.1 introduces the data set we use for the evaluation. Section
5.2 introduces the details of the evaluation setup. Finally, Section 5.3 presents
the evaluation results.

5.1 Test Collection

As we are the first to present an automated approach for annotating process
models with taxonomy concepts, there is currently no commonly accepted test
sample available. Hence, we use a set of BPMN process models that was created
during a PCF case study by students from the University of Osnabrück, Germany.
In the context of this case study, groups of students were asked to model a
set of three fictitious business processes from the area of change management,
product development, and human resources using BPMN. In addition, they had
to annotate the activities of the models with the corresponding PCF concepts. We
use the original annotations created by the students without any modifications.
The resulting model set comprises twelve manually annotated BPMN process
models consisting of a total of 148 activities.

Table 1. Overview of the test collection

Model #Activities Topic PCF Categories

1 9 Change Management 12
2 8 Change Management 12
3 9 Change Management 12
4 9 Change Management 12
5 12 Product Development 2, 3
6 15 Product Development 1, 2, 3, 4
7 14 Product Development 2, 3
8 16 Product Development 2
9 10 Human Resources 6
10 11 Human Resources 6
11 19 Human Resources 6
12 15 Human Resources 6

Table 1 gives an overview of the model characteristics including the number
of activities, the main topic of the model, and the PCF categories the activities
of the process model were assigned to. It shows that the models vary in size as
well as their coverage of the different PCF categories. Moreover, some models
are cross sectional (i.e., models 5, 6, and 7) while others only belong to a single
PCF category. Thus, we believe that the test set is well-suited to demonstrate
the applicability of our annotation approach.
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5.2 Setup

For evaluating the approach presented in this paper, we implemented it in
the context of a prototype. The prototype is based on the activity analysis
technique from [15], the second-order similarity implementation DISCO [13], and
the Markov Logic Network implementation RockIt [20]. We used our prototype
to automatically generate the annotations for the models from our test set and
the text-based PCF taxonomy version 5.2. We then compared the automatically
generated annotations A with the manual annotation from the students R. Based
on this comparison, we can assess the quality of the annotation by computing
the metrics precision and recall:

pre(A,R) =
|A ∩ R|
|A|

rec(A,R) =
|A ∩ R|
|R|

In our context, precision is the number of correct annotations computed
by our approach divided by the number of annotations our approach proposed.
Recall is the number of correct annotations computed by our approach divided by
the total number of annotations according to the manually created gold standard.

However, the drawback of the standard precision and recall metrics for our
context is that they only consider annotations that are correct up to the last sub
category. As an example, consider an activity ap that was manually annotated
with the concept 6.2.1.4. If our approach proposes to annotate ap with the
concept 6.1.2.2, this would be simply considered as incorrect although the first
three levels of the manually annotated concept were actually identified correctly.
To provide for a more fine granular perspective on our results, we introduce
a level-based form of precision and, recall which is in line with the approach
presented in [8].

To this end, we introduce a function parenti(at), which returns the ith parent
of a concept at ∈ At. We define parenti(at) = parent(parenti−1) for all i > 0 and
parenti(at) = at for all i ≤ 0. Thus, for instance, parent2(at) returns the concept
6.2 for the input concept 6.2.1.4. We further introduce a function level(at), which
returns the level of a concept at in the taxonomy. It, for example, returns 4
for the concept 6.2.1.4 and 2 for the concept 6.2. Based on these definitions,
we introduce a function ln, which maps a set of annotations A to a set of less
fine-grained annotations from level n:

ln(A) =
⋃

(ap,at)∈A

(ap, parentlevel(at)−n(at))

As an example, consider the set of annotations {(Distribute job offer, 6.2.1.4 ),
(Recruit employees, 6.2.2 )}. For these annotations, l2 would return {(Distribute
job offer, 6.2 ), (Recruit employees, 6.2 )} and l1 would return {(Distribute job
offer, 6 ), (Recruit employees, 6 )}. Based on ln, we are now able to define the
level-based form of precision and recall.

pren(A,R) =
|ln(A) ∩ ln(R)|

|A|
recn(A,R) =

|ln(A) ∩ ln(R)|
|R|
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As the PCF taxonomy that is used in the context of this evaluation has
four levels, we accordingly use four levels of precision and recall to evaluate
our results. In addition, we report the f-measure fmn for each level, which is
the harmonic mean of pren and recn. Respectively, the metrics pre4, rec4, fm4

provide information about annotations that are correct up to the forth level and
pre1, rec1, fm1 provide information about annotations that are at least correct
with respect to the main category.

5.3 Results

To demonstrate the applicability of the approach presented in this paper, we
tested different configurations:

– Baseline: As baseline configuration, we annotated each activity ap ∈ Ap

with the concept at ∈ At with the highest value for sim(ap, at). We did not
include any aspects from the above introduced ML formalization.

– ML with Wu & Palmer: For this configuration we used our ML formaliza-
tion to compute the best annotations based on the activity-concept similarity
sim and the distance dc between taxonomy concepts.

– ML with Category Weighting: For this configuration we used our ML
formalization to compute the best annotations based on the activity-concept
similarity sim and the category weights rel.

– Full ML Configuration: For the full configuration we included all pre-
viously discussed aspects into the ML formalization: the activity-concept
similarity sim, the distance dc between taxonomy concepts, and the category
weights rel.

Table 2 summarizes the results of our experiments. It shows that the baseline
configuration without Markov logic yields quite low results. The value of 0.20 for
the metric pre1 indicates that only one out of five activities is annotated with
a concept from the correct main category. The consideration of the additional
similarity measures in the context of our Markov implementation improves the
results significantly. While the sole use of the Wu & Palmer distance improves the
results only slightly, the sole use of the category weighting already has a big effect.
The f-measure fm1 of the category weighting configuration rises from 0.20 to 0.76
and fm2 rises from 0.18 to 0.38. Apparently, the additional category weight helps
to rule out candidates that have high values for sim, but generally cannot be
related to the process model. The positive effect of the Wu & Palmer distance can
be observed for the full configuration. The combination of the category weighting
and the Wu & Palmer distance causes an additional increase of fm2 from 0.38 to
0.45. The value of fm1, however, remains identical. This effect can be explained
by the fact that the Wu & Palmer distance does not cause the approach to
consider additional (and potentially correct) concepts. It rather improves the
coherence of the annotations among the already considered candidates. Hence, it
improves fm2 without affecting fm1. In addition, it does not compromise fm3

and fm4 too much. The small losses can be explained by a dominance of the Wu
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Table 2. Evaluation Results

Configuration n pren recn fmn

Basline

1 0.20 0.21 0.20
2 0.11 0.11 0.11
3 0.07 0.08 0.07
4 0.03 0.03 0.03

ML with Wu & Palmer

1 0.29 0.23 0.25
2 0.21 0.17 0.18
3 0.10 0.08 0.08
4 0.04 0.03 0.04

ML with Category Weighting

1 0.76 0.77 0.76
2 0.37 0.38 0.38
3 0.16 0.17 0.16
4 0.07 0.08 0.08

Full ML Configuration

1 0.76 0.77 0.76
2 0.44 0.45 0.45
3 0.14 0.14 0.14
4 0.05 0.06 0.06

& Palmer distance on the third and fourth level where the sim value would have
actually indicated the correct annotation.

Altogether, the results suggest that both the category weights as well as the
Wu & Palmer distance are helpful for finding correct and ruling out incorrect
annotations. Taking the huge complexity of the annotation problem into account
- each activity has more than thousand potential annotations - the results have to
be considered as good. About 76% of all activities were annotated with a concept
from the correct main category and 44% of all activities were annotated with the
correct subcategory. Figure 2 gives an indication of where our approach could be
improved by showing the values of fmn for each model separately.

From the numbers from Figure 2 we can learn that particularly the zero
values for models 3 and 8 negatively affect the overall result. The reason for
these numbers can be found in the use of highly specific words for which we were
not able to obtain a similarity value. As a result, the weight rel dominates the
small values from sim and causes an erroneous annotation of the entire process
model. In fact, the use of specific words also causes a major share of the incorrect
annotations among the other models. As an example, consider the activity Sales
contact OEM for details from model 8. Due to the domain specific abbreviation
OEM, the values sim do not help us to identify the correct concepts from the
taxonomy.

Besides the problem with specific words, the reason for the sub optimal
results on the levels three and four is given by the fact that some concepts
are semantically quite close. As an example, consider the activity Recommend
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Fig. 2. Detailed results of fmn for each model from the test set

candidate from model 9. Our approach annotated this activity with the concept
6.2.4.3 Recommend/not recommend candidate whereas the manual annotation
assigned it to 6.2.3.4 Select and reject candidates. Although the manual annotation
is an arguably better choice than the computed one, both concepts represent
semantically similar choices.

6 Related Work

The work presented in this paper relates to two major streams of research: process
model annotation and process model matching.

Research addressing process model annotation typically aims at describing
general guidelines and strategies [16] or the benefits and potentials associated with
the annotation [25]. Some approaches also automatically filter relevant concepts
from the considered ontology [4,7,3]. The final decision about the annotation is,
however, still taken by the user. Hence, we are, to the best of our knowledge, the
first who present an automatic approach for annotating process models.

Process model matching aims at the automatic identification of correspon-
dences between two process models. In prior work, a plethora of process model
matching approaches has been proposed [6]. Typically, they build on a com-
bination of structural or behavioral properties with different types of textual
similarity. Some rely on rather simplistic techniques such as the Levenshtein dis-
tance [26], others use WordNet for computing textual similarity [14,12]. However,
so far, no approach has considered the use of second-order similarity. Besides
these conceptual differences, it is worth noting that the overall complexity of
automated annotation is considerably higher. While a process model typically
does not consist of more than 30 activities, taxonomies often contain more than
thousand concepts [1].
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7 Conclusion

In this paper, we presented the first approach for automatically annotating
process models with concepts of a taxonomy. Our approach uses a Markov Logic
formalization to combine the results of different similarity functions. In contrast
to prior approaches from the area of process modeling, we did not use WordNet for
measuring the relatedness of words but the corpus-based method of second-order
similarity. An evaluation of our approach with 12 process models consisting of
148 activities and the PCF taxonomy consisting of 1,131 concepts showed that
our approach performs significantly better than a naive baseline and is able to
compute satisfying results.

As for future work, we consider two main directions. First, we aim at improving
the performance of our approach. Promising directions for accomplishing this
goal include the consideration of additional information of the process model
such as the control flow and the improvement of the similarity measurement
by training DISCO with domain-specific corpora. Second, we plan to study to
what extent our approach can be transferred to other types of ontologies as, for
instance, the MIT Process Handbook, which uses both part-of as well as is-a
relations to structure business activities.
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