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Abstract

Monitoring process performance is an important means for organizations to identify opportunities

to improve their operations. The definition of suitable Process Performance Indicators (PPIs) is

a crucial task in this regard. Because PPIs need to be in line with strategic business objectives,

the formulation of PPIs is a managerial concern. Managers typically start out to provide relevant

indicators in the form of natural language PPI descriptions. Therefore, considerable time and

effort have to be invested to transform these descriptions into PPI definitions that can actually

be monitored. This work presents an approach that automates this task. The presented approach

transforms an unstructured natural language PPI description into a structured notation that is

aligned with the implementation underlying a business process. To do so, we combine Hidden

Markov Models and semantic matching techniques. A quantitative evaluation on the basis of a

data collection obtained from practice demonstrates that our approach works accurately. Therefore,

it represents a viable automated alternative to an otherwise laborious manual endeavor.
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1. Introduction

Many organizations adopt a process-orientated view to identify opportunities for improving

their operations [1]. Monitoring process-related Key Performance Indicators, so-called Process

Performance Indicators (PPIs), represents an important prerequisite in this strive for continuous

process optimization [2]. A key task for managers, therefore, is to define suitable PPIs, which are

aligned with the strategic business objectives of the organization [3]. Typically, they achieve this

by describing relevant PPIs using natural language descriptions [4, 5]. This has the great advantage

that PPIs can be easily specified and understood by all stakeholders [6].

However, to successfully monitor PPIs, it must be clear how they relate to the technical im-

plementation of a business process in a Workflow Management or Enterprise Resource Planning

System [7]. For instance, the “Average time to complete a received order” PPI requires a system

to a) infer that an average time measure has to be computed across all process instances and b)

determine which events in the process indicate the receipt and the completion of an order, i.e. the

start and end points of the time to be measured. One way to capture this information is through

the use of a structured notation for specifying the contents of PPIs and their relation to business

process elements (cf. [3, 4, 8]). The problem is that such structured notations are not at all similar

to the unstructured natural language descriptions used and preferred by managers.

Currently, a manual transformation is the only way to obtain a structured specification of

the contents of PPIs and their relations to business process elements [9]. Such a transformation

requires considerable time and effort from a number of resources. To illustrate the causes of this,

consider the situation we observed during our extensive research collaboration with the Andalusian

Health Service [5, 10, 11]. There, the IT department received requests to measure PPIs for all

organizational processes, as specified by other departments in natural language. The IT department

had to manually establish SQL queries in order to compute the desired values for these PPIs. In

many cases, the necessary interactions between business and IT led to miscommunication. For

example, as a result of misinterpretations or incomplete specifications, the IT department often

obtained incorrect PPI values. The time required to clear up these differences was considerable.

In the general case, this necessary effort is even more problematic in light of the potentially vast
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size of process model repositories (possibly containing hundreds or even thousands of models [12])

and because processes and performance measures are subject to continuous change [13]. In sum,

this makes the task of manually transforming PPIs into a structured notation hardly manageable

in practice.

To overcome the problems associated with a manually performed transformation, this paper

presents an approach to automatically translate natural language PPI descriptions into PPIs de-

fined according to a structured notation. The proposed approach first transforms an unstructured

natural language description into a structured format. In this step, we extract information on

concepts relevant to the calculation of a PPI from the PPI description. For instance, we recognize

“average” from the exemplary PPI as an aggregation function over the process instances. Secondly,

our approach aligns the process concepts contained in the description with the corresponding ele-

ments of a process model. To this end, our approach establishes links between a PPI description

and the implementation of the process, for instance, by identifying the system event that corre-

sponds to the completion of an order. As a result, the approach delivers structured and aligned

PPI descriptions that can be directly used for automated monitoring of process performance.

The remainder of this paper is structured as follows. First, Section 2 illustrates the problem

addressed by our approach and describes streams of related work. Section 3 then defines templates

that we use for the structured notation of PPIs. Section 4 describes our automated approach for the

transformation of natural language PPI descriptions into this structured notation. In Section 5, we

present a quantitative evaluation of our approach. The limitations of our transformation approach

and the evaluation are discussed in Section 6. Finally, we conclude the paper and describe directions

for future research in Section 7.

2. Background

2.1. Problem Illustration

To illustrate the challenges associated with the transformation of natural language PPI descrip-

tions into a structured notation, consider the process model shown in Figure 1. This figure depicts a

simplified order handling process using the Business Process Model and Notation (BPMN). Table 1
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provides six exemplary PPI descriptions related to this process. These descriptions use linguistic

patterns that are similar to those that have been observed in practice [5].IS ppi formalization
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Figure 1: Process model for an order handling process

Table 1: PPIs for the order handling example

ID Description

PPI1 Number of accepted orders.
PPI2 Average time between receipt and completion of an order.
PPI3 Average time to complete a received order.
PPI4 The percentage of rejected orders.
PPI5 The maximum time to transport an order.
PPI6 The total order amount per customer.

To actually compute values for these PPIs, the natural language descriptions must be trans-

formed into a structured notation. In some cases, this transformation is relatively straightforward.

For instance, it is clear that the description of PPI1 refers to the number of process instances

for which the “Accept order” activity is executed. For PPI2, we are interested in the average

time between the “order received” and “order handling completed” events. Table 2 provides an

example of how this PPI can be captured in a structured manner. Here we use measure type and

aggregation to specify that the PPI computes the average time over process instances, whereas we

use start event and end event to establish the link between the PPI and the events of the process

model depicted in Figure 1. However, in other cases, the automated transformation of a PPI de-

scription into a structured definition is associated with considerable challenges. These challenges

mainly relate to the flexible and inherently ambiguous nature of natural language, as preferred by
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human users, but much less suitable for automated interpretation [14, 15]. We identify three main

challenges in this regard.

Table 2: Example of a structured notation for PPI2

Slot Value

ID PPI2
Description Average time between receipt and completion of an order
Measure type time
Aggregation average
Start event Order received
End event Order completed

The first challenge to overcome is that natural language descriptions do not follow a specific

structure or notation. These descriptions can express the same PPI using a broad variety of

syntactic patterns [16]. PPI2 and PPI3, for instance, both refer to the average time between the

receipt and completion of an order. However, the two PPI descriptions use clearly distinct patterns

to describe this measure. PPI2 refers explicitly to the start and end points of the measure in

chronological order. By contrast, PPI3 describes these two points in a reverse order, i.e. the end

point “completed” is described before the start point “received.”

The second challenge to overcome is that natural language PPI descriptions can depend on

implicit knowledge for their proper interpretation. Consider, for example, PPI4, “The percentage

of rejected orders”. This PPI refers to some fraction, where the numerator refers to the number of

process instances in which the “Reject order” activity is executed. However, the PPI description

does not specify the denominator for this fraction, i.e. it is not clear from the description by

what number this numerator should be divided. Instead, the description depends on the implicit

assumption that the denominator, most likely, refers to the total number of received orders.

Lastly, the third challenge that a transformation approach must address are problems caused

by differences in terminology between PPI descriptions and process models. For example, the

description of PPI5 refers to the time it takes to transport orders, whereas the process model

refers to this action as product shipment. Such differences occur in particular because PPIs and

process models are generally defined by organizational stakeholders that have different perspectives

on a process [17].
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In summary, an automated transformation approach must be able to deal with (i) a variety

of syntactic patterns, (ii) partially implicit PPI descriptions, and (iii) differences in terminology

between description and model. In Section 2.2 we review existing work that relates to these

challenges.

2.2. Related Work

This paper presents the first work on transforming natural language PPI descriptions into

a structured notation that allows for the automatic computation of the respective PPI values.

However, there are several approaches that relate to our work or partially address similar challenges.

To properly reflect on this, we review three main streams of research that are related to the goal of

our approach: (i) structured notations of PPIs, (ii) information extraction from natural language,

and (iii) research on model matching.

2.2.1. Structured PPI Notations

Performance measurement is an active research field in management science, which has gained

interest in both academia and business [8]. Much work has been performed on the identification

and classification of Key Performance Indicators in general settings [18] and those relevant for

specific domains such as logistics, production, and supply chains (cf. [19, 20, 21, 22]). Within the

context of Process Performance Measurement, great effort has been put on the formalization of

PPI definitions. This has resulted in a number of notations and frameworks for the description

and monitoring of PPIs [4, 5, 8, 23, 24, 25, 26, 27, 28]. The main differences among them are found

in their expressiveness, i.e. the different types of PPIs that can be defined, and their features to

directly support monitoring.

Most of the aforementioned frameworks can be used to capture PPIs in a structured notation

and automatically monitor their values. In this work, we describe an approach that works indepen-

dent of a specific framework. Our approach takes as input an unstructured natural language PPI

description and transforms it into a structured PPI definition. The structured notation that we

define for this purpose is generic; its components can be mapped to concepts used in specific PPI

frameworks, such as PPINOT [5] or notations used in [4, 24]. Since our approach can transform
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an unstructured PPI description into a structured notation, it addresses the second challenge we

described in Section 2.1. To achieve this, we make use of information extraction techniques.

2.2.2. Information Extraction from Natural Language

To transform a natural language PPI description into one in a structured notation, we need

to identify the parts of a PPI description that correspond to concepts of the structured notation.

This task resembles a so-called template-filling problem [29]. In this context, a template consists

of fixed sets of slots, which take as values slot-fillers belonging to particular classes. The task of

template filling is then to fill the slots with information extracted from a text. By performing

such an information extraction, we can deal with the variable structure of natural language PPI

descriptions. Therefore, template filling addresses the first challenge denoted in Section 2.1.

Template filling, which is also referred to as slot filling [30] or semantic-based understanding [31],

has been extensively studied and applied in a variety of contexts. A major application area for these

techniques is spoken language understanding, where information is extracted from unstructured

natural language text in the context of a dialog system [32]. To achieve this, many approaches

employ probabilistic models, such as (variations on) Hidden Markov Models (HMMs) [33, 34].

These and other existing approaches have been shown to work well in specification application

contexts. However, Jurafsky [29] notes that their good performance is partially due to certain

constraints. Namely, in the evaluated application scenarios, all texts are known to be relevant for

the specific task and are relatively small. Furthermore, the slots of the templates are to be filled

with snippets from the text itself. The former two constraints are also applicable in the context of

this work. Yet, the latter is not applicable here. Instead of filling slots with information directly

extracted from textual descriptions, we need to establish links between the concepts contained in

these descriptions and the actual implementation of a business process. In the context of slot-filling

problems, this task is referred to as entity linking [35]. To achieve this, we build on techniques

from the area of model matching, as we describe in the next sub section.
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2.2.3. Model Matching

The definition of automatically computable PPIs also depends on the establishment of links

between concepts described in a PPI description and the elements of the process model that cap-

ture the actual process implementation. The task of identifying such relations between concepts

in different artifacts is generally referred to as semantic matching [36]. This data integration task

has received wide attention in the form of (database) schema matching [37, 38, 39] and ontol-

ogy matching [40, 41]. In the context of business processes and process modeling, process model

matchers have been established, which automatically identify correspondences between activities

and events of process models [42]. Process model matchers exploit a variety of process model fea-

tures, including natural language [43], model structure [44], and behavior [45]. Other approaches

also consider the establishment of links between process models and other artifacts, such as event

logs [46] and textual process descriptions [47, 48]. All of these approaches deal with the third chal-

lenge identified for the approach presented here: dealing with differences in terminology between

the concepts of various artifacts. Therefore, we will use techniques applied in approaches that

consider the semantic similarity between terms and the structural relations between process model

elements.

The contribution of this paper is a transformation approach that deals with the challenges

associated with the automated transformation of unstructured PPI descriptions into a structured

notation. To achieve this, we build on the three research areas that we reflected upon in this

section. We combine information extraction and model matching techniques in a novel manner.

Furthermore, this work is the first to apply these techniques in the context of process performance

measurement.

3. PPI Templates

In this paper we set out to transform a natural language PPI description into a structured

notation that allows to automatically compute the PPI value. This requires us to first define

the structured notation into which we aim to transform the unstructured descriptions. We define

this structured notation in the form of PPI templates. Each PPI template captures the different
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concepts of a PPI definition that are required for its automated computation. We refer to the

placeholder of each concept in the template as a slot, to which a value, a so-called slot filler, must

be assigned when defining a PPI. For the definition of these templates, we build on the PPINOT

metamodel [5]. We have selected this metamodel because of its high degree of expressiveness and

because it explicitly establishes links to process model elements. This metamodel can be used to

define structured PPIs whose values can be computed in an automated manner. Specifically, we

base the templates for our approach on the templates and associated linguistic structures defined

in [10]. In Section 3.1, we introduce the slots that correspond to the different semantic concepts

that constitute the PPI templates. Section 3.2 describes the value domains with which each of

these slots can be filled.

3.1. Template Slots

We define four different PPI templates, each corresponding to a different type of measure that

may underly a PPI: numerical, temporal, data-based, and fractional PPIs. These templates can

capture the vast majority of PPIs that have been observed in empirical studies (cf. [5, 9]). Table 3

presents the four templates and provides an example for each of them.

Table 3: PPI templates and examples

Slot Value Slot Value

ID PPI1 ID PPI2
Description Number of accepted orders Description Average time between receipt and

completion of an order
Measure type count Measure type time
Aggregation sum Aggregation average
Counted event Accept order <completed> Start event Order received
Group-by — End event Order completed

Group-by —

ID PPI4 ID PPI6
Description The percentage of rejected orders Description The total order amount per cus-

tomer.
Measure type fraction Measure type data
Aggregation sum Aggregation sum
Numerator Reject order <completed> Measured attr. Order [amount]
Denominator Order received Group-by customer
Group-by —

Aside from an identifier and the natural language description, all of the templates capture four
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distinct semantic concepts, as illustrated by Figure 2: (i) measure type, (ii) aggregation function,

(iii) group-by property, and (iv) one or more process concepts. The first three semantic concepts

together characterize the measure of a PPI. The fourth concept links components of the PPI to

the actual implementation of a business process. We now elaborate on these semantic concepts.

PPI 
template

Measure 
type

Aggregation 
function

Group-by 
property

Process 
concept

1 0..1 0..1 1..*

Activity state 
change

Event 
occurrence

Data attribute 
value

Figure 2: Semantic concepts in a PPI definition

Measure type. The measure type classifies the nature of the measure underlying a PPI. In this

work, we focus on the four most common measure types according to [10]: count, time, data, and

fraction measures. A count PPI measures the number of times something happens. For instance,

PPI1 from the order handling example measures the number of orders that are accepted. Time

measures consider the duration between two instants, i.e. the start or completion of an activity

or the execution of an event. PPI2 and PPI3 represent examples of such time measures. Data

measures consider the attribute values of data objects. For example, PPI6 sums the amounts

associated with “order” data objects. Finally, fraction measures divide the value of one measure

by another. For example, PPI4 divides the number of rejected orders by the number of received

orders.

Aggregation function. Aggregation functions are used to aggregate the values of multiple process

instances. The most common functions are sum, maximum, minimum, and average [10]. For

example, PPI2 and PPI3 consider the average time of individual order handling instances, whereas

PPI5 considers the maximum time it takes to transport an order. Note that the aggregation

function is an optional slot in the templates, since it is not necessary to specify it for every measure.
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Group-by property. Group-by properties can be applied on measures with an aggregation function

in order to compute a value aggregated over those process instances that have a certain property.

These properties can be based on data attributes or on resources that are involved in the execution

of a process instance. For example, PPI6 uses a group-by property in order to determine the total

order amounts per customer. A group-by property is an optional slot in a PPI template. If no such

property is defined, the aggregated measure is simply applied on all process instances.

Process concepts. A process concept refers to a value or an occurrence of something during the

execution of a business process relevant to the computation of a PPI. As shown in Figure 2, process

concepts, in the context of a PPI template, can refer to different things. For instance, an activity is

started, a process model event occurs, or the value of a data attribute changes. Each PPI template

has one or more slots associated with process concepts. The exact number and the semantics of

these slots differ per measure type. In particular, we define the following semantic roles for the

different measure types:

• count measure: counted event ;

• time measure: start event, end event ;

• data measure: measured attribute;

• fraction measure: numerator, denominator.

Each of the semantic roles associated with a particular measure type should be filled with at least

one process concept. For example, a time measure should always have a start and an end event.

Furthermore, a slot may be filled with multiple events. For example, a count measure can be used

to measure the total number of occurrences of multiple events, such as the number of accepted and

the number of rejected orders.

3.2. Slot Domains

As illustrated in the previous section, PPI templates contain four different types of slots: mea-

sure types, aggregation functions, group-by properties, and process concepts. In a structured PPI

definition, each of these slot types can only be filled with values from a closed class, i.e. from a

specific domain. By filling slots with values from known domains, we can ensure that values for
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the defined PPIs can actually be computed in an automated manner. Consider, for example, the

textual description of PPI2. This description refers to the “completion of an order”. Without

incorporating domain knowledge, it is not clear to which process concept this statement exactly

refers. Therefore, it is not possible to compute a value for this PPI based on just this information.

If we, instead, fill this slot with a value from the appropriate slot domain, i.e. by associating the

slot with the “Order handling completed” process model event, we overcome this issue. Then, we

know that the computation of a value for this PPI requires us to stop the measurement when this

specific event occurs. Table 4 summarizes the domains for the four different slot types.

Table 4: Domains associated with template slots

Slot type Domain values

Measure type count, time, data, fraction
Aggregation function minimum, maximum, average, sum
Group-by property Process model resource roles & data attributes
Process concepts Process model activities, states, events, & data attributes

Measure type & Aggregation. The domains for measure type and aggregation function slots are

independent of the process to which the PPI relates. A measure type slot always receives a value

from one of the four measure types considered by our approach: count, time, data, and fraction.

Similarly, the domain for aggregation functions covers the most common functions identified in [10]:

minimum, maximum, average, and sum. The semantics of these aggregation functions differ per

measure type. For instance, for time measures an average function will yield the average time

between two events. By contrast, when this same function is applied to a data measure related to

an “Order [amount]” attribute, the function yields the average order amount.

Group-by property. The domain for group-by properties depends on the contents of the process

model to which the PPI relates. The group-by property describes a data attribute or resource role

that is used to aggregate process instances. Therefore, the domain for slots of this type depends on

the set of resource roles R and the attributes of the data objects D included in the process model.

For instance, the group-by property of PPI6 corresponds to the resource role customer ∈ R.
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Process concepts. Process concept slots are filled with references to parts of a process implemen-

tation. Therefore, the domain associated with these slots differs per process model. This domain

is based on the activities, events, and data attributes of a process model. Given these elements, a

process concept slot can be filled in three different ways, as previously indicated in Figure 2.

First, process concepts in a PPI definition can refer to the state change of a process model

activity. We consider state changes of activities, rather than activities as a whole, because the

calculation of PPIs often requires the consideration of an exact time instant. For example, in order

to compute the time it takes to ship products, we are interested in the difference between the time

instants of the start and completion of the activity execution. These two, start and completion,

represent the most common state change of activities. However, PPIs can also refer to other states,

such as pausing or cancellation of activities. Second, process concept slots can correspond to the

triggering of process model events. Since such event occurrences are always instantaneous, this is

not associated with a state change. As an example, consider PPI2. There, both the start and end

times refer to process model events, i.e. to the “order received” and “order handling completed”

events. Third, process concept slots can be associated with data attribute values. For example, to

compute PPI6, “The total order amount per customer”, we have to consider the value of the data

attribute amount of the order data object.

In the next section, we present our approach, which automatically fills the defined templates

for natural language PPI descriptions.

4. Transformation Approach

To transform an unstructured natural language PPI description into a structured notation,

we define the transformation task as a template-filling problem. In this section, we describe a

transformation approach that addresses this problem. Given a natural language PPI description,

our approach aims to obtain the information necessary to fill the slots of a PPI template. To

achieve this, the transformation approach performs two subsequent steps, as depicted in Figure 3.
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Figure 3: Overview of the proposed transformation approach

First, the approach parses a natural language description in order to identify the parts of the

description that correspond to slots of the PPI template. For this parsing step we employ HMMs.

We refer to this parsing task as semantic annotation. Second, the approach determines the appro-

priate slot-fillers by matching the semantically annotated parts to values in the relevant domain,

e.g. by matching concepts from the natural language description to activities in a process model.

We refer to this task as domain value resolution. In the remainder of this section, Sections 4.1

and 4.2 respectively describe the semantic annotation and domain value resolution tasks in detail.

Afterwards, Section 4.3 considers the operationalization of our approach and its extensibility.

4.1. Semantic Annotation

The first step of our approach identifies those parts of a natural language PPI description that

correspond to the semantic concepts contained in the PPI templates. For example, for PPI5: “the

maximum time to transport an order”, we aim to identify that “maximum” corresponds to the

concept of an aggregation function, “time” corresponds to the measure type, and “transport an

order” describes the events to be measured. For this semantic annotation task, we define a tag set

M that can be used to annotate relevant semantic concepts in natural language PPI descriptions.

Section 4.1.1 describes this tag set and provides exemplary annotations. In Section 4.1.2, we then

illustrate how we employ HMMs to automatically annotate unstructured PPI descriptions.

4.1.1. Semantic Tags

Table 5 presents the tag set we use for the semantic-annotation step. We establish this tag set

M by defining two sorts of tags. First, M includes tags that correspond to each of the semantic

concepts from the PPI templates. For example, we use AGR to refer to an aggregation function and
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FNE to denote a numerator event of a fraction PPI. Second, M contains tags used to annotate

textual indicators that signal the transition of the description to a new semantic concept. For

example, we use the tag TEI, i.e. a time end indicator, to show that a time end event will be

described next. This can be seen for PPI2, “Average time between receipt and completion of an

order”, where the term and denotes a transition from the description of the start event (receipt)

to the end event (completion of an order). Here, it is important to note that the term and only

denotes this transition in this specific context, i.e. when it occurs in the description of a time

measure and between the description of two events. In other contexts, this term likely has a

considerably different meaning. Being able to deal with such context-dependent meanings of terms

is a particular strength of the HMMs that we employ for the annotation.

When annotating a PPI description, our approach assigns tags to parts, i.e. chunks, of a PPI

description rather than to individual words. Each word in the description is part of exactly one

chunk and each chunk is assigned exactly one tag. We use π =< ϕ1, . . . , ϕn > to denote the chunks

of a partitioned description and M =< m1, . . . ,mn > to describe the sequence of tags assigned to

the chunks, where mi ∈M is the tag that corresponds to the chunk ϕi ∈ π.

Table 5: Tag set used for semantic annotation

Tag Description Examples

AGR Aggregator function average, sum, maximum
GBI Group by indicator per, for each
GBC Group by concept category, customer, department

CMI Count measure indicator number of, volume of, number of times
CE Counted event accepted orders, incidents

TMI Time measure indicator time, duration, throughput time
TSI Time start indicator from, between
TSE Time start event order received, product picking
TEI Time end indicator to, until
TEE Time end event order completion, product shipment
TBE Time start and end event service interruptions, product packaging

FMI Fraction measure indicator percentage of, ratio of, proportion for
FNE Fraction numerator event rejected orders
FDI Fraction division indicator divided by, relative to, as a percentage of
FDE Fraction denominator event received orders

To illustrate the usage of the tag set, consider the following annotation of PPI2 from the order
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handling process:

π\M = average\AGR, time\TMI, between\TSI, receipt\TSE, and\TEI, completion of

an order\TEE.

From this annotation, we can learn that “average” corresponds to the aggregation function slot

of a PPI template, “receipt [of an order]” to the start event and “completion of an order” to the

end event.

In the tag set M, we purposefully do not define separate tags for data measures, because

their semantic structure generally follows a similar syntactic pattern as other measures. Consider,

for instance, PPI6: “the total order amount per customer”. This description of a data measure

follows an identical structure as a count measure would. However, in the context of this process

model amount, it refers to a data attribute of an order rather than describing a regular count

measure. Since such distinctions solely depend on the contents of the process model, i.e. on its

data objects, we leave the differentiation between data and other measure types for the second step

of our approach.

4.1.2. Semantic Annotation using HMMs

To automatically annotate a PPI description, we use an HMM, a so-called probabilistic sequence

classifier. A sequence classifier is a model that assigns a label or class to each unit in a sequence,

thus mapping a sequence of observations to a sequence of labels. In the context of our approach, it

assigns a tag to chunks of natural language PPI descriptions. HMMs are probabilistic in the sense

that they compute a probability distribution over all possible sequences of tags and choose the

best tag sequence [29]. Formally, given a word sequence W that constitutes a PPI description, the

goal of the HMM is to find the semantic representation of the meaning M that has the maximum

a posteriori probability P (M |W ) [33]. This probability is given by the following equation:

M̂ = arg max
M

P (M |W ) = arg max
M

P (W |M)P (M) (1)

Equation 1 shows that, to compute M̂ , the HMM combines two separate models: a semantic

prior P (M) and a lexicalization model P (W |M). We now briefly describe how these models work
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Figure 4: Fragment of a semantic prior P (M)

in the context of our transformation approach. For a more detailed explanation of the technical

aspects underlying HMMs, we refer the interested reader to [49].

Semantic prior. The semantic prior P (M) assigns a probability to an underlying semantic structure

M . Intuitively, it models the probability that a PPI description follows a certain semantic structure,

i.e. a sequence of tags fromM. The model can be represented as a probabilistic finite automaton.

The states of this automaton correspond to labels in the set M. The transition probabilities

between states denote the probabilities that these states follow each other in a semantic structure.

These probabilities can be learned by training an HMM on a collection of (partially) annotated

PPI descriptions. Section 4.3 explains the training of an HMM in detail.

The semantic prior that results from a training phase can be used to determine the likelihood

that PPI descriptions follow a certain semantic structure. As an example, consider the fragment

of a semantic prior depicted in Figure 4. This figure shows the semantic prior relevant to the

annotation of time measures1. From this semantic prior, we can observe that, despite the huge

variability that natural language PPI descriptions can use to describe time measures, there is much

less diversity in the semantic structure that they follow. For example, the prior shows that if a time

measure (in this training set) has an aggregation function, this is the first semantic concept that is

described, whereas an optional group-by property occurs at the end of a description. Furthermore,

the prior shows that a time measure indicator (TMI) is followed by a specification of an event

that describes both the beginning and end of the measure (TBE) with a probability of 0.61, i.e.

1Note that we only visualize non-zero transition probabilities.
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TMI → TBE has a probability of 0.61. In the other cases, TMI is followed by a time start

indicator (TSI). By contrast, a TSI is always followed by a time start event (TSE) (probability of

1.00), because there are no other semantic structures in which a TSI occurs. This means that a

TSI will never be directly followed by, for instance, a time end event or a group-by indicator.

Lexicalization Model. The lexicalization model P (W |M) quantifies the probability that a given

word sequence W is used to model a certain semantic structure M . Intuitively, it quantifies

the probability that W is used to convey a meaning M . In particular, it models the transition

probabilities between words given a certain context, i.e. a certain semantic concept. Probabilities

in the lexicalization model have the form P (wordn|wordn−1, context), which is the probability

of taking a transition from one word to another given a particular context [34]. For example,

P (time | throughput, TMI) is the probability that the word time follows the word throughput in

the context of a TMI (time measure indicator). As for the semantic prior, these probabilities are

learned from a (partially) annotated training set. By training a lexicalization model, we can, for

instance, learn that the word for is much more likely to be followed by the word each in the context

of a group by indicator (GBI) than in the context of a time start event (TSE). Therefore, the HMM

will assign a higher likelihood to the possibility that “for each” indicates a group-by property than

that it is part of the description of a start event.

PPI Annotation. Once the HMM has been trained, it can be used to assign tags to a previously

unseen PPI description. To find the best tag sequence M̂ , the optimization problem denoted

by Equation 1 considers the product of the probabilities from the semantic prior P (M) and lex-

icalization P (W |M) models. The combination of these two models follows intuitively, because

the probability that a word sequence W corresponds to a certain semantic structure W , depends

on both the likelihood of this semantic structure occurring P (M) and the likelihood that the

individual words in W are associated with a certain semantic meaning P (W |M). Because this

optimization problem refers to the most likely tag sequence for an entire PPI description, HMMs

are able to assign the correct tag to terms that have context-specific semantics, such as described

in Section 4.1.1.
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The task of finding the optimal sequence of labels M̂ is also referred to as decoding. The

most common decoding algorithm for HMMs is the viterbi algorithm [29]. The viterbi algorithm

is a form of dynamic programming that is applied in a wide range of natural language processing

contexts, including machine translation [50], part-of-speech tagging [51], and spoken language

processing [52]. Because of the common application of the algorithm and the fact that it only affects

the computational efficiency of the optimization problem and not the final outcome, we abstract

from its details and refer the reader to [29, 53] for a more detailed explanation. Section 4.1.1

already showed the semantic annotation obtained in this manner for PPI2. For the remaining

three PPI descriptions considered in Section 3, we obtain the following semantic annotations:

PPI1 : π1\M1 = number\CMI of accepted orders \CE

PPI4 : π4\M4 = the percentage\FMI of rejected orders \FNE

PPI6 : π6\M6 = the total\AGR order amount\CE per\GBI customer\GBC

We take these semantic annotations as input for the next step of our approach: the domain

value resolution step.

4.2. Domain Value Resolution

In the second step of our approach, we obtain a PPI definition by filling the slots of a PPI

template with values from the appropriate domains. The semantic annotations obtained in the

previous step tell us which chunks of text correspond to which slots in a PPI template. For example,

from the annotation of PPI2, we know that the chunk ϕ6 : “completion of an order” corresponds

to the end event slot in a template. We illustrate the full connection between semantic annotation

and template on the left-hand side of Table 6. However, this only presents an intermediate result

of our approach. To be able to actually measure the value of this PPI definition, links have to be

established to the events that occur during the execution of the process. For example, to compute

a value for PPI2 we need to determine to which process model event the chunk ϕ6 corresponds.

Therefore, in this second step of our approach, we fill the template slots with values from the

appropriate domains in order to obtain a template as depicted in Table 6b.

To perform this domain value resolution for aggregation functions and group-by properties,

we consider the semantic similarity between a chunk ϕ and the respective domain values. For
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Table 6: Domain value resolution for PPI2

(a) Fillers from semantic annotation

Slot Value

Measure type time
Aggregation “average”
Start event “receipt”
End event “completion of an order”
Group-by —

(b) Fillers after domain value resolution

Slot Value

Measure type time
Aggregation average
Start event Order received
End event Order completed
Group-by —

process concepts, we combine semantic similarity with constraints, which we impose based on the

semantics of the various measure types. In the remainder, Section 4.2.1 and Section 4.2.2 describe

semantic similarity and the additional constraints in detail.

4.2.1. Semantic Similarity

We use semantic similarity to determine for a given chunk ϕ ∈ π which value in its associated

domain Dϕ has the most similar meaning. We consider semantic rather than (just) syntactic simi-

larity for this task because it allows us to deal with semantically related terms, such as synonyms.

For example, by considering semantic similarity, we can learn that the chunk “transport an order”

is most closely related to the “product shipping” activity.

Tokenization. To determine the semantic similarity, we first apply a tokenization function on a

chunk ϕ and on the domain values Dϕ. This function performs three tasks. First, it splits the

textual contents of a chunk or a domain value into individual terms. Second, the function filters

out stop words like “the”, “an”, and “from”, since they have been found to be of little use when

considering similarity between texts [54]. Finally, the tokenization function lemmatizes the re-

maining terms. This means that all remaining terms are transformed into their grammatical base

form, which is also referred to as lemma. For instance “is” and “been” are both transformed into

“be”. To implement these steps we use the Stanford Parser and the associated toolkit [55]. We

denote the resulting bag-of-words for a chunk ϕ with ωϕ. As an example, the tokenization function

yields the following bag-of-words for the chunk ϕ =“completion of an order”: ωϕ = {completion,

order}.
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Semantic similarity computation. Given two bags-of-words ωϕ and ωd, we quantify the semantic

similarity using a similarity measure proposed by Mihalcea et al. [56]. This measure combines

the semantic similarity of individual terms with word specificity scores. Equation 2 presents this

measure for a chunk ϕ and a domain value d.

sim(ϕ, d) =
1

2


∑
t∈ωϕ

maxSim(t, ωd)× idf(t)∑
t∈ωϕ

idf(t)
+

∑
t∈ωd

maxSim(t, ωϕ)× idf(t)∑
t∈ωd

idf(t)

 (2)

In Equation 2, maxSim(t, ω) determines the maximum semantic similarity between a single

term t and a bag-of-words ω. Formally, this is computed as follows:

maxSim(t, ω) = max{sim(t, t′) | t′ ∈ ω} (3)

In this equation, sim(t, t′) captures the semantic similarity between two terms. We compute

this value using a so-called second order similarity method [57]. Second order similarity is based

on the statistical analysis of co-occurrences of terms in large text collections. These methods have

the great advantage that they can deal with context-specific terms, such as typically found in the

business settings relevant to our presented approach [58]. The function sim(t, t′) returns a value

in the range [0, 1], where 1.0 indicates perfect semantic similarity, i.e. the terms are equal.

Lastly, Equation 2 incorporates word specificity scores in the form of the well-established inverse

document frequency (idf). The idf gives a low weight to common terms, because they have relatively

low discriminating power, and a high weight to relatively uncommon terms.

The calculation of semantic similarity suffices for aggregation function and group-by property

slots, since the appropriate values for these slots solely depend on the textual similarity between

chunk and domain value. By contrast, for the filling of process concept slots, we also have to

consider constraints related to the semantics of a measure type.

4.2.2. Constraints on event alignment

When filling the slots of a PPI template, it is important that the end result makes sense from a

semantic perspective. For instance, the start event of a time measure should always occur before its
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end event. Otherwise, the resulting metric will be semantically invalid. For this reason, we impose

certain constraints on the inter-relations of the process model elements assigned to process concept

slots. To achieve this, we formulate the slot-filling task for event slots as an alignment problem.

Alignments capture relations that exist between concepts from different artifacts. In the context

of this work, an alignment σ consists of a number of pair-wise correspondences, each between a

tagged chunk from a PPI description ϕ ∈ πe and an element of a process model m ∈M , denoted as

ϕ ∼ m. We impose constraints on an alignment σ through a constraint function Γ. In particular,

we use Γ to impose three semantic constraints. The first constraint applies to time measures, the

other two relate to fraction measures. Because the constraints are applicable to the inter-relations

that exist between the correspondences assigned to different slots, we do not define constraints for

count measures, which only have a single slot to be filled through the correspondences.

Time measures. For time measures, we impose an ordering constraint on the events and activities

associated with the start event and end event slots. From a semantic viewpoint, a PPI in which

the start event occurs after the end event does not make sense. Therefore, we ensure that the

model element mi aligned to the start event slot πi occurs in the process model before the element

mj associated with the end event slot πj . We achieve this by considering the strict order relation

 that exists between the events and activities in a process model, where a  b denotes that

an element a never occurs after the element b [59]. We thus impose the constraint that given, an

alignment for a time measure σ = {πi ∼ mi, πj ∼ mj}, it must hold that mi  mj .

Non-trivial fractions. For fraction measures, we make sure that the obtained result is not a trivial

measure, i.e. that the defined measure does not always yield 1.0. For this reason, we ensure that the

numerator slot πn and denominator slot πd are not aligned to the same model element. Therefore,

given an alignment σ = {πn ∼ mn, πd ∼ md}, it must hold that mn 6= md.

Computable fractions. Lastly, we ensure that a fraction measure can actually be computed, instead

of resulting in a divide-by-zero error. Therefore, we must ensure that the denominator slot is filled,

even for those cases where a PPI description does not explicitly mention a denominator. This can,

for example, be seen for PPI4, which simply specifies “the percentage of rejected orders”, without
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specifying a denominator. In these cases, we align the slot πd by default to a process concept

that represents a more coarse-granular version of the process concept aligned to the numerator

slot πn. There are two possibilities for such default numerators. If pin is aligned to a data object

with a specific status, e.g. “order [updated]”, we align pid to the data object without the status

specification, e.g. the “order” data object, if any. As such, we obtain a fraction measure that

divides the number orders that have been updated by the total number of orders. For all other

alignments of pin, we align the denominator by default to the start event(s) of a process. In this

way, the denominator corresponds to the total number of process instances. For example, PPI4

will then divide the number of rejected orders by the total number of received orders.

We combine these constraints with semantic similarity scores. Therefore, we set out to obtain

an alignment that has the highest possible sum of semantic similarity scores for the correspondences

in σ, as long as σ abides to the alignment constraints Γ. The alignments obtained in this way, in

combination with the domain value resolution of the other slot types, then provide the final result

of our transformation approach: a filled-in PPI template.

4.3. Operationalization and Extensibility

The transformation approach described in this section can be regarded as an extensible frame-

work for the transformation of natural language PPI descriptions into measurable indicators. In

this paper, we have so far described an instantiation of this framework that covers the most common

types of PPIs according to insights obtained from practice [3, 5, 10]. A prototypical implementa-

tion of the approach, which we also employ in the quantitative evaluation of Section 5, is made

publicly available.2 This approach comes with a pre-trained HMM and is, therefore, ready to use

to transform PPIs that suit the currently used set of templates. However, should users desire to

extend our approach, for example, by incorporating different measure types, this can be achieved

in a straightforward manner.

An extension requires the specification of new (or adapted) PPI templates and a re-training of

the HMM. By designing new PPI templates in accordance to a structured PPI notation, such as

2Download from: www.hanvanderaa.com/downloads/ppi-transformation
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the PPINOT metamodel [3], it can be ensured that also the values of these newly covered measure

types can be computed in an automated manner. Once a new template has been defined, the

HMM must be adapted to be able to generate PPI definitions in accordance to this template. To

this end, tags must first be defined to cover newly introduced semantic concepts. As previously

explained in Section 4.1.1, two tags must be defined for each new semantic concept: (i) a tag for

the semantic concept itself and (ii) a tag for an indicator of the concept. Once the adapted tag set

has been defined in accordance with these guidelines, several additional PPI descriptions must be

annotated with these tags in order to retrain the HMM to incorporate the newly defined measure

type.

The amount of new training data required depends on the (expected) variety of linguistic

patterns that can be used to describe the measures. As the evaluation in the next section illustrates

for fraction measures, sometimes only a handful of annotated PPI descriptions suffices. Two

approaches are possible to train the HMM. In case an available training set T is fully annotated,

i.e. all PPI description in the training set are annotated, the models P (M) and P (W |M) can be

learned by simply counting [33]. For instance, we can learn the probability that a TEE tag follows a

TMI tag by taking the number of descriptions in T that contains the subsequence < TMI, TEE >

divided by the total number of descriptions in T containing < TMI >. In case T is only partially

annotated, estimation algorithms can be used to compute the probability distributions. The most

commonly used are forward-backward algorithms, such as the Baum-Welch method (see e.g. [49]).

Due to the ability of these methods to work with partially annotated data, it is possible to add

large amounts of additional training data, without the need to annotate them all.

Through similar adaptations, the approach can be extended in other ways. For example, new

aggregation functions can be included, the functionality of group-by properties can be extended,

or the HMM can be trained to work on specific application domains.

5. Evaluation

To demonstrate the capabilities of our transformation approach, we conduct a quantitative

evaluation by comparing automatically generated structured PPI definitions to a manually created
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gold standard. The goal of this evaluation is to learn how well the automated approach approximates

manual transformations of PPI descriptions. If our transformation approach can automatically

generate high quality PPI definitions, i.e. definitions that closely resemble those created manually

by experts, our approach can be regarded as a viable and efficient alternative to an otherwise

time-consuming manual endeavor. To assess this potential, we use a test collection consisting of

129 PPIs obtained from industry. Both the data collection and prototypical implementation used

in this evaluation are made publicly available.3

5.1. Test Collection

To evaluate our approach, we use a collection of process models and accompanying natural

language PPI descriptions from practice. Part of the test collection consists of an industrial data

set stemming from prior research on the formalization of PPI definitions and service level agree-

ments [5, 9]. In particular, this set consists of processes from three different organizations: (i) a

healthcare institute, (ii) a university, and (iii) a telecommunications provider. This data collection

was originally provided in Spanish, but translated to English in collaboration with the respective

industrial partners for the, aforementioned, earlier research projects. We augmented the industrial

data set with a number of process models and PPIs from the SCOR (Supply Chain Operations

Reference) reference framework. From the SCOR framework, we selected processes with a high

number of associated performance indicators per process and a considerable complexity of the

associated process model. The selected processes cover different aspects of the logistics domain:

procurement, production, and delivery. The PPI descriptions obtained in this manner were not

altered with respect to their contents. The set of descriptions varies greatly with regard to their

language and structure. Due to these varying characteristics in combination with the different na-

ture of the organizations from which they were obtained, we believe that the collection is well-suited

to achieve a high external validity of the results.

We had to exclude nine PPI descriptions from the original data collection. These PPI descrip-

tions could not be manually transformed into a structured notation based on the contents of the

available process models, i.e. their computation required information that is not conveyed in the

3Download from: www.hanvanderaa.com/downloads/ppi-transformation
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Table 7: Overview of the test collection

Source P E PPIs Count Time Data Frac. Aggr. Group-by

Industry 10 12.5 47 25 20 1 7 12 8
SCOR 3 8.3 76 27 21 24 4 39 1

Total 13 11.5 129 52 41 25 11 51 9

model. The resulting test collection consists of 12 process models with a total of 129 associated

PPIs. Table 7 presents an overview of the further characteristics of the collection. This table shows

the average number of elements (activities and events) per process model E, the number of PPIs

per type, and the number of PPIs that are associated with an aggregation function (aggr.) or

group-by property.

5.2. Setup

To conduct the evaluation, we implemented the presented transformation approach in the form

of a Java prototype. The prototype uses the Stanford CoreNLP toolkit [55] for the tokenization of

PPI descriptions and the semantic similarity implementation DISCO [57] to calculate second order

similarity scores. We use this prototype to generate structured definitions for the PPI descriptions

included in the test collection.

We compare the generated definitions to a manually created gold standard. For the creation

of this gold standard, we mostly built on formalized definitions for the industrial PPIs that were

created in the context of earlier work [5, 11]. For the remaining processes, we let two researchers

independently establish a gold standard. This yielded an inter-annotator agreement of 0.97. The

five discrepancies between the two gold standards were resolved through a discussion.

To perform the comparison between the generated definitions and the gold standard, we com-

puted the well-known precision and recall metrics. We used A to denote the set of slots filled by

our approach and R for the slots filled in the gold standard.4 Precision then reflects the frac-

tion of slots that our automated approach filled correctly according to the gold standard. Recall

represents the fraction of slots filled in the gold standard that were also correctly filled by our

4Note that we exclude null values assigned to the optional aggregation function and group-by property slots from
consideration.
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approach. Equations 4 and 5 provide the formal definitions of the metrics. Furthermore, we report

the f1-score as the harmonic mean of precision and recall.

prec(A,M) =
|A ∩ R|
|A|

(4) rec(A,M) =
|A ∩ R|
|R|

(5)

Since the presented work provides the first transformation approach for PPI descriptions, there

is no established benchmark against we can compare its performance. To be able to still provide

some benchmark, we compare the performance of our approach to earlier work presented in [11].

That work uses a heuristic-based three-step approach to establish alignments between a PPI de-

scription and the elements of a process model. Although our transformation approach addresses a

wider problem, both approaches establish links between PPI descriptions and process model ele-

ments. Therefore, the work from [11] provides a suitable benchmark for one of the most important

parts of our approach. We refer to the results obtained by the existing approach, on the same data

collection, as the baseline.

To compute the evaluation results, we train our approach on a part of the PPI collection,

referred to as the training set, and apply it on the remainder of the data collection, the test set.

To avoid any bias in the result due to sampling, we perform a repeated k-fold cross-validation. In

k-fold cross-validation, a data set D is randomly split into k mutually exclusive subsets (i.e. folds),

D1, . . . ,Dk of approximately equal size [60]. In each experiment run, our approach is then tested k

times. Each time t ∈ {1, 2, . . . , k} we trained the HMM on D\Dt and tested it on Dt. By repeating

the cross-validation with different random splits of the data set, we can learn how much the results

are affected by a particular partitioning of the data collection.

The repeated cross-validation furthermore enables the use of statistical tests to compare the

distribution of the results achieved by our transformation approach to the baseline. We employ

the well-known Kolmogorov-Smirnov test (see e.g. [61]) for this purpose. Let Ft,n and Fb,n′ be the

distribution functions of the results obtained by the cross-validation for, respectively, our approach

and the baseline. The Kolmogorov-Smirnov test evaluates the null hypothesis that Ft,n and Fb,n′

are equal, i.e. that there is no statistical significant difference between the results obtained using
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our approach and the baseline.

5.3. Results

In this section, we present the results of our evaluation experiments. Section 5.3.1 first gives

an overview of the results. Section 5.3.2 then provides details about how our approach compares

to the baseline. Section 5.3.3 finally discusses the challenges our approach faces in the context of

a post-hoc analysis.

5.3.1. Overview

We used our prototype to conduct a k-fold cross-validation with k = 10, which we repeated 30

times. We performed this cross-validation for the industry and SCOR data collections separately,

as well as for the combined collection. Table 8 summarizes these results for our approach and the

baseline. It shows that our transformation approach performs well, obtaining an average F1-score

of 0.85. The approach achieves an average precision of 0.89, ranging between 0.78 for group-

by properties and 0.93 for aggregation functions. The average recall obtained by the approach

is 0.82, ranging from 0.72 for the alignment of process concepts and 0.96 for the identification

of aggregation functions. From the low observed standard deviations (0.01 for the entire set of

slots), we can learn that the performance of the approach is stable in the context of this data set.

Furthermore, we observe that the alignment of process concepts differs considerably between the

two data collections. For the other slot types, the average performance is comparable.

Lastly, it is interesting to consider that our approach achieved a fully correct transformation

for 67% of the PPIs in the data collection. Furthermore, the transformation approach returns at

most one incorrect slot filler for a total of 86% of the PPIs.

5.3.2. Baseline Comparison

Comparing the performance of our approach against the baseline, the results show that our

transformation outperforms the baseline approach from [11]. The Kolmogorov-Smirnov test reveals

that these results are significant (p < 0.01) for all metrics and across both applicable slot types.

With respect to the identification of measure types, our approach achieved precision and recall

scores of 0.92, whereas the baseline obtained scores of 0.87 for both metrics. This difference can
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be attributed to the more error-prone, keyword-based classification method used by the baseline

approach. This classification method can make mistakes, because it looks at terms in isolation

and does not consider the position of terms in the PPI description. By contrast, our approach

considers the semantics of the entire PPI description, i.e. all terms and their positions, rather

than focusing on individual words for the classification. Similar to the identification of measure

types, our approach outperforms the baseline with respect to slots containing process concepts. Our

approach achieves an F1-score of 0.79, whereas the baseline approach achieves an F1-score of 0.69.

This difference can mainly be attributed to the usage of an HMM for the semantic annotation

step. The HMM represents a parser that is specifically tailored to deal with PPI descriptions.

Therefore, it can identify these chunks of a PPI description that describe process concepts with

high accuracy. Since the baseline approach uses a more generic parser (i.e. a general parser for

grammatical structures), it fails to achieve the same level of accuracy.

Table 8: Evaluation results

Baseline Approach
Data source Slot type prec. rec. F1 prec. rec. F1

Measure type .82 .82 .82 .90 .90 .90
Process concepts .63 .59 .61 .67 .63 .65

Industry Aggregators - - - .92 1.00 .97
Group-by - - - .74 .74 .74

Total .71 .68 .69 .78 .76 .77

Measure type .87 .87 .87 .94 .94 .94
Process concepts .85 .67 .75 1.00 .80 .89

SCOR Aggregators - - - 1.00 1.00 1.00
Group-by - - - – – –

Total .88 .77 .82 .98 .88 .93

Measure type .87 .87 .87 .92 .92 .92
Process concepts .75 .63 .69 .87 .72 .79

Full collection Aggregators - - - .93 .96 .94
Group-by - - - .78 .78 .78

Total .79 .71 .74 .89 .82 .85
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5.3.3. Post-hoc Analysis

The quantitative evaluation shows that our transformation approach achieves a high result

accuracy. A post-hoc analysis of these results reveals that the approach faces two main types of

challenges. One challenge corresponds to the semantic annotation step and the other to the domain

value resolution step of our approach.

The usage of HMMs for semantic annotation enables our approach to deal with a broad variety

of linguistic patterns, even if a PPI description contains previously unseen terms or syntactic

constructs. However, the parser can produce incorrect annotations if unseen terms play a prominent

role in a PPI description. For instance, the collection of PPI descriptions from the SCOR framework

contains a single PPI description that uses the term “leadtime” in a time measure. Because this is

a unique occurrence in the used data collection, the HMM parser does not recognize this important

term. Therefore, it incorrectly annotates this PPI description as a count measure, which results

in an incorrect measure type prediction. Furthermore, due to the semantic difference between

count and time measures, it also results in an incorrect alignment of process concepts. A count

measure refers to only a single process event, whereas a time measure requires both a start and an

end event. Therefore, the misclassification will also lead to at least one event not being correctly

aligned. Still, such cases are rare and their occurrences can be mitigated by extending the data

collection used to train the HMM.

The domain value resolution step of our approach has to deal with the highly complex task

of identifying the event that a chunk of text describes. The main challenge here is that certain

correspondences depend on context-specific information for their identification. As an illustration,

consider a PPI description from the industrial collection: “the elapsed time between the technician

arrival to headquarters and the closure of the intervention”. The start event of this description

corresponds to the chunk “the technician arrival to headquarters”, as is correctly identified in the

parsing step. However, identifying the correct process concept for this chunk is far from trivial.

The process model accompanying this PPI does not contain any activity or event that describes

an “arrival” or “headquarters”. Instead, the event corresponds to the start of an activity labeled

“Perform field intervention”. To identify this correspondence correctly, background knowledge is
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required to establish the connection between the “arrival of a technician” and the start of a “field

intervention”. Our automated approach does not take such domain knowledge into account and,

in some cases, identifies incorrect alignments between the PPI description and a process model.

From the results described in Table 8, it becomes clear that such cases are particularly present in

the industrial data collection.

Despite these challenges, the evaluation results demonstrate that the PPI definitions generated

by our automated approach closely approximate PPI definitions manually created by experts.

Therefore, we can conclude that our automated approach presents an efficient alternative for an

otherwise highly tedious, manual task.

6. Limitations

Our quantitative evaluation demonstrates that our approach achieves promising results in prac-

tical settings. However, these results need to be considered against the background of certain

limitations. In particular, we identify limitations related to the transformation approach and lim-

itations related to the evaluation of the approach.

Regarding the transformation approach itself, we identify two limitations. First, our transfor-

mation approach provides an automated alternative to a highly complex task. As a result, the PPI

definitions the approach generates are accurate, but not one hundred percent perfect. If desired,

inaccuracies can be manually resolved by experts. This arguably requires less manual effort than it

takes to manually define all PPIs from scratch. As such, our transformation approach allows users

to trade-off between invested time and effort versus result quality. Second, it has to be considered

that our transformation currently is not able to detect when it is dealing with a PPI description

that it cannot transform based on the available information. Such a situation can occur if the

PPI describes a measure type that is currently not included in the set of templates or if the PPI

description requires information that is not captured in a process model. The latter case was

observed for the nine PPI descriptions that we had to exclude in the evaluation.

The presented quantitative evaluation results are bound to the specifics of the employed data

collection. This data collection is not representative in a statistical sense. In fact, the creation of
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a statistically representative sample is hardly feasible due to the variability of PPI descriptions.

This variability manifests itself in two manners. First, the utilized data collection is not guaranteed

to provide a statistically representative coverage of the types of measures that exist in practical

scenarios. As a result, the included templates do not cover all imaginable PPIs, but rather the ones

most observed in our empirical studies. As stated earlier, the impact of this limitation is diminished

by the extensibility of our approach. Second, within each measure type, the data collection presents

a sample of the natural language patterns that can be used to specify measures of this type. It is

possible that in other organizations, measures are described in different ways.

These factors should be taken into account when interpreting the specified results. Still, we

aimed to compose a data collection that is as heterogeneous as possible by obtaining data from

various sources. Therefore, we are confident that our evaluation indeed shows a realistic picture of

the performance of our approach in practice.

7. Conclusion

In this paper, we presented an approach for the automated transformation and alignment

of natural language descriptions of PPIs. Our approach takes as input a natural language PPI

description and produces a structured, template-based notation of a PPI of which the value can be

computed automatically. To achieve this, the approach builds on HMMs as a linguistic parser to

identify the parts of a PPI description that correspond to slots in a PPI template. Then, we use

semantic similarity measures and semantic constraints to fill the slots with the appropriate values

belonging to particular domains. We evaluated the performance of our approach with a set of real-

world PPI descriptions and accompanying process models obtained from various industrial sources.

The evaluation revealed that the structured PPI definitions generated by our approach are a good

approximation of those created by manual experts. Furthermore, the evaluation demonstrated that

our transformation approach significantly outperforms an existing approach, which also tackled

a problem with a more limited scope. Therefore, our approach represents a viable, automated

alternative to an otherwise highly laborious and time-intensive, manual task.

In future work, we aim to pursue two main directions. First, we intend to improve the accuracy
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and coverage of our transformation by addressing the aforementioned limitations. For this we can

exploit the extensibility of our approach. If data on other measure types is available, the approach

can be extended by simply introducing additional semantic tags and, optionally, alignment con-

straints. A second promising direction is to find the process model related to a PPI description or

vice versa. This could, for instance, be used to develop a querying technique that automatically

identifies the PPIs that are relevant for a certain business process.
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[27] O. González, R. Casallas, D. Deridder, MMC-BPM: A Domain-Specific Language for Business Processes Anal-

ysis, Business Information Systems 21 (2009) 157–168.

[28] J. Saldivar, C. Vairetti, C. Rodrguez, F. Daniel, F. Casati, R. Alarcn, Analysis and improvement of business

process models using spreadsheets, Information Systems 57 (2016) 1 – 19.

[29] D. Jurafsky, J. H. Martin, Speech & language processing, Pearson Education India, 2000.

34



[30] G. Tur, D. Hakkani-Tür, L. Heck, What is left to be understood in ATIS?, in: Spoken Language Technology

Workshop, IEEE, 2010, pp. 19–24.

[31] Y. Wang, A. Acero, Combination of CFG and n-gram modeling in semantic grammar learning, in: Eurospeech,

International Speech Communication Association, 2003, pp. 2809–2812.

[32] A. L. Gorin, G. Riccardi, J. H. Wright, How may I help you?, Speech communication 23 (1) (1997) 113–127.

[33] Y. Wang, L. Deng, A. Acero, Spoken language understanding, Signal Processing Magazine 22 (5) (2005) 16–31.

[34] S. Miller, R. Bobrow, R. Ingria, R. Schwartz, Hidden understanding models of natural language, in: Proceed-

ings of the 32nd annual meeting on Association for Computational Linguistics, Association for Computational

Linguistics, 1994, pp. 25–32.

[35] D. Bikel, V. Castelli, R. Florian, D.-j. Han, Entity linking and slot filling through statistical processing and

inference rules, in: Proceedings of the Text Analysis Conference, 2009.

[36] F. Giunchiglia, P. Shvaiko, M. Yatskevich, Semantic matching, in: Encyclopedia of Database Systems, Springer,

Heidelberg, Germany, 2009, pp. 2561–2566.

[37] A. Gal, Uncertain schema matching, Synthesis Lectures on Data Management 3 (1) (2011) 1–97.

[38] H.-H. Do, E. Rahm, Matching large schemas: Approaches and evaluation, Information Systems 32 (6) (2007)

857–885.

[39] L. Po, S. Sorrentino, Automatic generation of probabilistic relationships for improving schema matching, Infor-

mation Systems 36 (2) (2011) 192–208.

[40] J. Euzenat, P. Shvaiko, et al., Ontology matching, Springer, Heidelberg, Germany, 2007.

[41] S. Raunich, E. Rahm, Target-driven merging of taxonomies with Atom, Information Systems 42 (2014) 1–14.

[42] U. Cayoglu, R. M. Dijkman, M. Dumas, P. Fettke, L. Garcıa-Banuelos, P. Hake, C. Klinkmüller, H. Leopold,

A. Ludwig, P. Loos, et al., The process model matching contest 2013, in: 4th International Workshop on Process

Model Collections: Management and Reuse, Springer, Heidelberg, Germany, 2013, pp. 442–462.

[43] M. Weidlich, E. Sheetrit, M. C. Branco, A. Gal, Matching business process models using positional passage-based

language models, in: International Conference on Conceptual Modeling, Springer, 2013, pp. 130–137.
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