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Abstract

Textual process descriptions are widely used in organizations since they can be created and understood

by virtually everyone. Because of their widespread use, they also provide a valuable source for process

analysis, such as compliance checking. However, the inherent ambiguity of natural language impedes the

automated analysis of textual process descriptions. While human readers can use their context knowledge

to correctly understand statements with multiple possible interpretations, automated tools currently have to

make assumptions about their correct meaning. As a result, compliance-checking techniques are prone to

draw incorrect conclusions about the proper execution of a process. To provide a comprehensive solution

to these reasoning problems, we use this paper to introduce the concept of a behavioral space as a means

to deal with behavioral ambiguity in textual process descriptions. A behavioral space captures all possible

interpretations of a textual process description in a systematic manner. Thus, it avoids the problem of

focusing on a single, possibly incorrect interpretation. We use a quantitative evaluation with a set of of 47

textual process descriptions to demonstrate the usefulness of a behavioral space for compliance checking in

the context of ambiguous texts.
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1. Introduction

Non-compliance represents a risk for many organizations. According to a recent study by Thomson

Reuters, non-compliance may even represent a possible cause of bankruptcy, also for the so-called “be-

hemoths” in the financial sector [1]. Recognizing the risk that is associated with non-compliance, orga-

nizations in a wide range of domains are stepping up their spending in order to ensure their compliance

with laws, regulations, and procedures. In this context, automated compliance checking techniques play a

crucial role thanks to their ability to automatically identify compliance violations [2, 3]. For this reason,

numerous approaches have been developed to perform this task (cf. [4, 5, 6, 7]). What these compliance-

checking techniques have in common is that they rely on a structured specification of allowed behavior, for

example in the form of process models or business rules. As a result, these techniques ignore the wealth

of information that is contained in less structured forms of process documentation, such as textual process

descriptions [8].

While the relevance and widespread use of text documents as a source for process analysis has been

emphasized in various contexts [9, 10, 11, 12], the inherent ambiguity of natural language presents a con-

siderable challenge to compliance-checking techniques. For example, a simple natural language statement

such as “in parallel to the latter steps” leaves room for interpretation. Due to this statement’s ambiguity, it

is generally impossible to infer with certainty whether “latter” refers to the preceding two, three, or even

more activities mentioned in the textual description. In prior work, text-to-process model generation tech-

niques have circumvented this problem by introducing interpretation heuristics [9, 13, 14]. In this way, these

techniques obtain a single process-oriented interpretation of the text, in spite of the presence of ambiguous

sentences. This interpretation, however, contains assumptions on the correct interpretation of essentially

undecidable ambiguity issues. So, there is always the risk that the derived interpretation conflicts with the

proper way to execute the process. As a result, the focus on a single, assumed interpretation can lead to

incorrect and, thus, untrustworthy compliance-checking results.

To provide a rigorous solution for the reasoning problems caused by ambiguous natural language state-

ments, we introduce a novel concept which we refer to as a behavioral space. A behavioral space precisely

captures all possible behavioral interpretations of a textual process description. The behavioral space clearly

defines which behavior is within and which behavior is outside any reasonable bounds of interpretation. By

2



using behavioral spaces for compliance checking, we avoid the need to impose assumptions on the correct

interpretations of ambiguous natural language texts. Therefore, compliance checks based on behavioral

spaces provide trustworthy results: They avoid the risks associated with the selection of incorrect interpre-

tations.

The remainder of the paper is structured as follows. Section 2 motivates the problem of reasoning under

behavioral ambiguity in textual process descriptions. In Section 3, we introduce the notion of a behavioral

space to capture behavioral ambiguity. Section 4 describes how a behavioral space can be generated from

a textual process description. We show how to perform compliance checks using a behavioral space in

Section 5. Then, Section 6 introduces a semi-automated pruning technique that can be used to effectively

reduce the uncertainty in compliance-checking results. In Section 7, we demonstrate the usefulness of

behavioral spaces and our proposed pruning technique through a quantitative evaluation using real-world

data. Section 8 discusses streams of related work. Finally, we conclude the paper and discuss directions for

future research in Section 9.

2. Behavioral Ambiguity in Textual Process Descriptions

In this section, we illustrate the problem associated with compliance checking of process behavior

against textual process descriptions. The key challenge in this context is the inherent ambiguity of natural

language. Ambiguity in natural language refers to a type of uncertainty in which several interpretations of

the same text are plausible. For example, the sentence “I saw a man on the hill with a telescope” can have

at least five plausible interpretations. These interpretations vary, among others, on who is on the hill (I or

the man) and on the possessor or the location of the telescope (I, the man, or it is on the hill). In certain

situations, the correct interpretation of an ambiguous statement can be clear from the context in which it is

used, whereas in other situations even context cannot help to resolve ambiguity.

The goal of compliance checking is to determine if some observed behavior (i.e. a sequence of per-

formed activities) conforms to the allowed behavior described by a process specification, i.e. a textual pro-

cess description. Therefore, in a compliance-checking context we are particularly concerned with ambiguity

related to the allowed process behavior described in a text, which we shall refer to as behavioral ambigu-

ity. Behavioral ambiguity occurs when statements about the relations that exist between process steps can
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After a claim is received, a claim officer reviews the request and records the claim information. The
claim officer then validates the claim documents before writing a settlement recommendation. A senior
officer then checks this recommendation. The senior officer can request further information from the
claimant, or reject or accept the claim. In the former case, the previous steps must be repeated once
the requested information arrives. If a claim is rejected, the claim is archived and the process finishes.
If a claim is accepted, the claim officer calculates the payable amount. Afterwards, the claims officer
records the settlement information and archives the claim. In the meantime, the financial department
takes care of the payment.

Figure 1: Exemplary description of a claims handling process.

be interpreted in different ways. We illustrate the problem of behavioral ambiguity through the simplified

description of a claims handling process, as presented in Figure 1. The description uses typical patterns to

describe ordering relations, as observed in process descriptions obtained from practice and research [9].

At first glance, the description from Figure 1 may appear to be clear. However, on closer inspection, it

turns out that the description does not provide conclusive answers to several questions regarding the proper

execution of the described process. For instance:

Q1. Is it allowed that the claims officer records the claim information before reviewing the request?

Q2. Does it suffice for the claim officer to rewrite the settlement recommendation in case additional infor-

mation has been requested?

Q3. Can the financial department start paying the claimant while the settlement information is still being

recorded?

Based on the information provided in the textual description, these questions are not clearly decidable.

This lack of decidability results from two forms of behavioral ambiguity: type ambiguity and scope ambigu-

ity. Type ambiguity occurs when a textual description does not clearly specify the type of order relationship

between two activities. For instance, the relation between the “review request” and “record claim infor-

mation” activities in the first sentence is unclear. The term “and” simply does not allow us to determine

whether these activities must be executed sequentially or whether they can be executed in an arbitrary order

(Q1). Scope ambiguity occurs when statements in a textual description underspecify to which activity or

activities they precisely refer. This type of ambiguity particularly relates to repetitions and parallelism. For

instance, the statement “the previous steps must be repeated” does not clearly specify which activities must

4



be performed again (Q2). Similarly, the expression “in the meantime” does not define when the financial

department can start performing its activities (Q3).

As a result of such ambiguities, there are different views on how to properly carry out the described

process. When deriving a single structured interpretation from a textual process description, as done by

process model generation techniques (cf. [9, 13, 14]), there is always the risk that a derived interpretation

conflicts with the proper way to execute the process. The focus on a single interpretation can, therefore,

lead to wrong conclusions when reasoning about a business process. This can, for instance, result in a

loss of efficiency by not allowing for parallel execution where possible (Q3). Furthermore, it can result in

non-compliance with regulations, for example, by failing to impose necessary ordering restrictions (Q1) or

by not repeating all of the required steps when dealing with the receipt of new claim information (Q2).

To avoid the problems associated with using an assumed interpretation, automated reasoning techniques

should take into account all reasonable interpretations of a textual process description. Therefore, we use

this paper to introduce the concept of a behavioral space. A behavioral space allows us to capture the full

range of possible semantics that can be conveyed by textual descriptions in a structured manner. As such, it

provides the basis to correctly reason about compliance to described processes.

3. Capturing Behavioral Ambiguity using Behavioral Spaces

In this section, we introduce and define the concept of a behavioral space. This concept provides the

foundation to reason about behavioral compliance for ambiguous process descriptions. The general idea

underlying behavioral spaces is to represent the causes and effects of behavioral ambiguity in a structured

manner. In Section 3.1, we first consider how to capture the various possible interpretations of a single

ambiguous behavioral statement. Then, Section 3.2 defines the concept of a behavioral space as a means to

capture all possible ways to interpret an entire textual process description.

3.1. Behavioral Statement Interpretations

Textual process descriptions consist of statements, i.e. sentences or parts of sentences, that describe

ordering relations between activities. We shall refer to such statements as behavioral statements. Each be-

havioral statement describes a single type of relation that holds between two or more activities. For example,

the statement “After a claim is received, a claims officer reviews the request” describes a sequential relation
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between “receive claim” and “review request”. These relations described in behavioral statements can be

translated into a structured notation. In this paper, we employ the behavioral profile relations from [5] for

this purpose. This choice is based on two main criteria. First, behavioral profile relations allow for an

intuitive representation of the concepts we introduce in the remainder of this paper. Second, the relations

can be used for computationally efficient compliance checks. This feature is important because the compu-

tational complexity of compliance checks increases with the number of interpretations of a textual process

description.

The behavioral profile relations capture the ordering restrictions that are in effect between pairs of

activities. Four different behavioral profile relations can exist for an activity pair (ai, a j). The strict order

relation ai  a j is used to express that activity ai cannot be executed after the execution of activity a j. The

reverse strict order relation ai  
−1 a j indicates the opposite restriction, namely that ai cannot be executed

after the execution of ai.1 The exclusiveness relation ai + a j denotes that either activity ai or activity a j can

be executed in a single process instance. Finally, the interleaving order relation ai || a j states that ai and a j

can be executed in an arbitrary order. Using the activity identifiers specified in Table 1, this results in the

relation a1  a2 as a relation that holds between receive claim and review request .

Table 1: Activities in the running example

ID Activity ID Activity

a1 Receive claim a8 Reject claim
a2 Review request a9 Accept claim
a3 Record claim information a10 Receive requested information
a4 Validate documents a11 Calculate payable amount
a5 Write settlement recommendation a12 Record settlement information
a6 Check recommendation a13 Archive claim
a7 Request further information a14 Arrange payment

Behavioral ambiguity in a textual process description occurs when behavioral statements can be in-

terpreted in different manners. We refer to these statements as ambiguous behavioral statements. These

statements result in conflicting activity relations. For instance, the statement “a claim officer reviews the

request and records the claim information” results in two interpretations. It is unclear whether this state-

ment implies a strict order or an interleaving order between the two described activities. This leads to two

1Note that the reverse strict order relation ai  
−1 a j can only exist if and only if a j  ai.
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different possible behavioral relations, namely a2  a3 and a2 || a3.

In the remainder, we use the term statement interpretation to refer to the various behavioral relations that

are associated with a single interpretation of a behavioral statement. Unambiguous behavioral statements

result in a single statement interpretation, whereas ambiguous statements lead to multiple interpretations.

Definition 1 capture this notion.

Definition 1 (Statement Interpretations). Let s be a behavioral statement in the set of behavioral statements

S T of a textual process description T , AT the set of activities described in T , and R = { , −1,+, ||} the

set of behavioral profile relations. We define Γs as a set consisting of one or more statement interpretations

for the statement s. Each statement interpretation γ ∈ Γs captures the behavioral relations that follow a

possible interpretation of s, which is defined as a partial function γ : AT ×AT 9 R that assigns a behavioral

profile relation from R to a pair of activities from AT , if any.

Next, we discuss how these statement interpretations serve as a basis for the establishment of behavioral

spaces, which consist of interpretations of an entire textual process description.

3.2. Behavioral Spaces

Using the interpretations of individual statements as a basis, we can construct views on the full process

behavior described in a textual description. We refer to a specific view as a process interpretation. A process

interpretation for a text T follows from the selection of a single statement interpretation for each statement

s in the set of behavioral statements S T . We define a process interpretation as given in Definition 2.

Definition 2 (Process Interpretation). Let T be a textual process description, AT the set of activities de-

scribed in T , S T the set of behavioral statements in T with Γs the set of statement interpretations of a

statement s ∈ S T , and R = { , −1,+, ||} the set of behavioral profile relations. We then define a process

interpretation as a tuple P = (I, BP), with:

• I: a complete set of interpretations consisting of a single statement interpretation γ ∈ Γs for each

statement s ∈ S T , formally the following constraint holds: ∀s ∈ S T : |I ∩ Γs| = 1;

• BP : AT × AT → R a function that assigns a behavioral profile relation from R to each pair of

activities from AT .
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Recognize that in Definition 2 any activity relation that follows from a function γ ∈ I is part of BP,

but that the reverse does not necessarily hold. BP defines a complete behavioral profile based on the in-

terpretations included in I, which includes relations that follow from the transitivity of the strict order and

interleaving order relations [15]. For instance let γ1 ∈ I be a statement interpretation that establishes the

relation a b and let γ2 ∈ I be a statement interpretation that establishes b c. Then, BP will include

the relation a  c that follows due to transitivity2, even though this relation is not part of any statement

interpretation in I. Despite the overlap between them, we include I alongside BP in Definition 2. This

is done in order to preserve traceability between the obtained process behavior described by BP and the

statement interpretation in I that provided the foundation for BP. As such, we can use this traceability to

provide more useful diagnostic results when performing compliance checks.

A textual process description without ambiguity has exactly one process interpretation. For a textual process

description T with behavioral ambiguity, the set of possible process interpretations follows naturally as the

set of possible combinations of statement interpretations for the ambiguous statements. For example, a text

with two ambiguous behavioral statements si and s j, with, respectively, two and three different statement

interpretations, will yield a set of 2 × 3 = 6 process interpretations. The concept of a behavioral space

captures this spectrum of possible interpretations for a single process. Figure 2 visualizes this, by depicting

a three-dimensional view on the behavioral relations that exist between the activities in an ambiguous textual

description. Definition 3 provides the formal definition of a behavioral space.

Definition 3 (Behavioral Space). Let T be a textual process description, AT the set of activities described

in T , and S T the set of behavioral statements in T . We define a behavioral space BST as a set of process

interpretations of the textual process description T .

In Section 4, we consider how to automatically generate behavioral spaces from textual process descriptions.

4. Constructing Behavioral Spaces

This section describes an approach to automatically generate a behavioral space from a textual process

description. The approach, visualized in Figure 3, consists of three steps. First, a textual process descrip-

tion T is parsed in order to identify and analyze the set of behavioral statements S T . Second, the proposed

2Note that this only applies if no interpretation γ ∈ I denotes a (different) relation between activities a and c.
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Figure 2: A behavioral space as a collection of m process interpretations

approach generates behavioral interpretations for each statement in S T . Third and lastly, the different state-

ment interpretations are combined into a collection of process interpretations that, together, comprise the

behavioral space BS.

In the remainder of this section, we present the details on each of these three steps. Given the focus on

behavioral ambiguity of this paper, we mainly describe those aspects of the generation procedure that are

specific to the consideration of ambiguity. Existing text-to-process model generation approaches, cf. [9],

already address most challenges related to the parsing of textual descriptions (step 1) and related to the

extraction of behavioral relations for unambiguous behavioral statements (part of step 2).

1. Parse textual 
description

Textual process
description

2. Compute 
interpretations per 

statement

3. Generate 
behavioral 

space

Behavioral 
space

Figure 3: Steps involved to construct a behavioral space from a textual description

4.1. Parsing Textual Process Descriptions

The first step in the approach is to parse a textual process description T . The goal of this parsing step is

to identify the set of behavioral statements S T and to extract behavioral information from these statements.
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Each behavioral statement in a text describes a single type of relation that holds between a number of

activities. Therefore, a sentence in a textual description can contain more than a single behavioral statement.

For example, the sentence “After a claim is received, a claim officer reviews the request and records the

claim information”, contains two separate behavioral statements. One statement describes the strict order

relation between “claim is received” and “reviews the request”. The other describes an ambiguous relation

between “reviews the request” and “records the claim information”.

For each behavioral statement in S T , the parsing step extracts the parts of the statement that refer

to process concepts and their inter-relations. As such, the parser identifies references to three semantic

components that together comprise a behavioral relation of the form: <source, relation type, target>. These

components are a source reference, a relation type reference, and a target reference. We speak about

references, rather than process concepts here, because textual descriptions often use different ways to refer

to the same concept. For instance, “previous activity” provides a reference to some aforementioned activity;

it is not a process concept itself. To clarify the parsing results obtained in this manner, we present the

parsing results for three statements in Table 2. We will use these examples in the remainder of this section

to further illustrate the algorithm that generates statement interpretations.

Table 2: Exemplary outcomes of behavioral statement parsing

ID Statement Source ref. Relation ref. Target ref.

s1 After a claim is received, a claim of-
ficer reviews the request

claim is received (a1) after reviews the request (a2)

s2 a claim officer reviews the request
and records the claim information

reviews the request (a2) and records the claim infor-
mation (a3)

s3 In the meantime, the financial de-
partment takes care of the payment

ε meantime takes care of payment
(a14)

The techniques necessary to perform this parsing step are equal to the parsing used by existing text-to-

model generations approaches. These approaches use a combination of standard natural language process-

ing (NLP) tools and heuristic-based techniques. NLP tools, such as the Stanford Parser [16], are used to

identify the grammatical structure of sentences. This structure is important to extract the business object on

which an action is being performed and to identify the actor who is performing the action. For example,

the “claims officer” (actor) “reviews” (action)“the request” (business object). While the NLP tools mainly

provide general techniques to analyze individual sentences and, thereby, extract activities, more tailored
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techniques are necessary to extract the ordering relations that exist between activities. For this purpose,

model generation approaches employ heuristic-based techniques that recognize typical patterns used to ex-

press ordering relations. Such patterns include sequences like ”After activity i, do activity j” or choices like

“If condition, then activity i, else activity j”. Since these techniques are extensively described in related

work, we do not elaborate on them. The interested reader may consult the work by Friedrich et al. [9] for a

detailed description of a state-of-the-art parsing technique.

4.2. Computing Statement Interpretations

In the second step, the proposed approach constructs interpretations for each behavioral statement in

S T . Algorithm 1 formalizes this part of the approach. The algorithm takes as input a parsed behavioral

statement s ∈ S T , in which the semantic components have been identified. Then, it generates one or more

statement interpretations, depending on the presence and the type of ambiguity in S T . Given a statement

s ∈ S T , we distinguish three cases for this: (i) s is unambiguous, (ii) s contains type ambiguity, or (iii)

s contains scope ambiguity. To which of these three cases a statement belongs depends on the ability to

resolve the textual references with certainty. The following sections describe each of these cases in detail.

Algorithm 1 Computing interpretations for a behavioral statement
1: function computeStatementInterpretations(ParsedStatement s)
2: Set interpretations = new Set();
3: if s.isUnambiguous() then . Statement is not ambiguous
4: Set sourceActivities = s.getSourceActivities();
5: Set targetActivities = s.getTargetActivities();
6: RelationType r = s.getRelationType();
7: interpretations.add(createInterpretation(sourceActivities, r, targetActivities));
8: if s.hasTypeAmbiguity() then . Relation type is ambiguous
9: Set sourceActivities = s.getSourceActivities();

10: Set targetActivities = s.getTargetActivities();
11: for RelationType r ∈ RelationTypes.get(s.getRelationReference()) do
12: interpretations.add(createInterpretation(sourceActivities, r, targetActivities));
13: if s.hasScopeAmbiguity() then . Scope of source reference is ambiguous
14: Set targetActivities = s.getTargetActivities();
15: RelationType r = s.getRelationType();
16: Set sourceActivities1 = getPrecedingActivitiesWithSameResource(s);
17: interpretations.add(createInterpretation(sourceActivities1, r, targetActivities));
18: Set sourceActivities2 = getPrecedingActivitiesWithSameObject(s);
19: interpretations.add(createInterpretation(sourceActivities2, r, targetActivities));
20: Set sourceActivities3 = getActivitiesFromPrecedingControlFlowBlock(s);
21: interpretations.add(createInterpretation(sourceActivities3, r, targetActivities));
22: return interpretations;
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4.2.1. Unambiguous Behavioral Statements

Generating a process interpretation for an unambiguous statement is relatively straightforward: all ref-

erences in the statement can be resolved in a single and unambiguous manner. For these cases, we can

generate a single statement interpretation by simply resolving the references and constructing a behavioral

relation. For example, for statement s1, we can directly generate the relation a1  a2. Algorithm 1

describes in lines 3–7 the creation of an interpretation for unambiguous statements. Since there is no ambi-

guity, we can automatically extract the set of source activities, target activities, and the relation type from

the parsed statement.

4.2.2. Statements with Type Ambiguity

A behavioral statement with type ambiguity describes a relation among a specific set of activities, but

does not clearly define the type of relationship. Such statements can be identified because they have an

ambiguous way to refer to the relation type, i.e. the relation reference is ambiguous. In line 8, Algorithm 1

checks if statement s has type ambiguity by determining if the relation reference (relationRef ) is a known

ambiguous type indicator. In the context of this work, we focus on two ambiguous type indicators, namely

the terms and and or. It is important to distinguish between cases where relationRef = “and” and cases

where relationRef = “and, then” or similar. In the latter cases, the relation type is not ambiguous, since

a sequential relation is clearly specified. Although these statements with unclear relation types are am-

biguous, we can generate a set of statement interpretations that accurately capture the different possible

interpretations.

If a statement indeed suffers from type ambiguity, the algorithm continues by resolving the unambiguous

source and target activity references (lines 9–10). Afterwards, the algorithm generates a single statement

interpretation for each applicable relation type (lines 11–12). For example, for statement s2 from Table 2, we

generate one statement interpretation that contains a sequential relation and one that contains an interleaving

order relation between activities a2 and a3.

4.2.3. Statements with Scope Ambiguity

Dealing with behavioral statements with scope ambiguity represents the most complex case of the three.

These statements describe the existence of a relation, but do not specify between which activities this re-
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lationship holds. In practice, such ambiguity occurs with respect to the set of source activities to which a

behavioral statement refers. For example, the statement s3 “In the meantime, the financial department takes

care of the payment”, does not specify to what activities “meantime” refers. Consequently, the source refer-

ence is empty (ε), as indicated in Table 2. Statements with scope ambiguity typically occur in the context of

parallelism and loops because such behavioral patterns can be associated with textual references to groups

of activities.

To automatically identify cases with scope ambiguity, we analyzed how existing techniques for the

generation of process models from textual descriptions handle parallelism and loops. These techniques

generally use heuristics to identify and analyze behavioral statements in a text. They build on predefined

sets of indicators that pinpoint the different types of relations, e.g. “while” and “in the meantime” for parallel

or interleaving order relations and “is repeated” for backward loops. Specifically, we analyzed the set of

indicators used by the state-of-the-art technique from [9]. In this analysis, we isolated a subset of the

parallelism indicators employed by the technique that typically result in statements with scope ambiguity.

These indicators are presented in Table 3. What these indicators have in common is that their usage does

not allow for the specification of a scope of the statement, i.e. these indicators cannot be associated with

a source reference at all. Consider, for example, the sentence “In the meantime, the financial department

takes care of the payment”. It is syntactically not possible to specify to which set of activities a statement

with in the meantime refers. By contrast, if we replace this construct with a non-ambiguous indicator, from

the second set in Table 3, this problem can be avoided. For example, the indicator “while” can be used

to specify the scope of the statement, e.g. “While the claim is being archived”. By observing the usage of

such ambiguous indicators, we can identify statements with scope ambiguity (line 13 of Algorithm 1) and

generate interpretations for them (lines 14–21).

Table 3: Parallel indicators used in [9] and their classification

Class Contents

Unambiguous while, as well as, in parallel to
Ambiguous meanwhile, concurrently, meantime, in the meantime

Although statements with scope ambiguity are highly problematic since they refer to an unknown set

of activities, we can still identify a set of possible meanings for them. In particular, we can utilize the
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knowledge that statements such as “the previous steps” and “in the meantime” refer to distinct parts of

a process. This means that the set of activities to which these statements refer cannot be any arbitrary

combination of activities. The activities in the set must rather have a certain commonality, such as a set of

activities that are all executed by the same person.

For this reason, we generate interpretations for statements with scope ambiguity based on sets of ac-

tivities that have a certain common attribute. In particular, given a textual process description, we can

identify sets of subsequently described activities that are (i) performed by the same resource, (ii) performed

on or with the same (business) object, or (iii) are part of the same control-flow construct (e.g. a choice in

the process). Based on this, we obtain different interpretations for the statement s3. In this statement, “in

the meantime” can refer to different moments when the financial department can start taking care of the

payment. This results in three possible statement interpretations, each with a different commonality:

1. Common resource: While the claims officer, the last described resource, is performing its tasks, after

a senior claims officer has accepted the claim, i.e. {a11, a12, a13};

2. Common object: While activities are being performed on the last mentioned business object (the

claim), i.e. {a13};

3. Last control-flow construct: While the last mentioned activity before the statement is being executed,

i.e. {a13}.

These three possibilities result in three sets of relations that can follow from the same behavioral state-

ment. Lines 14–21 describe the generation of a statement interpretation for each of the three sets of activi-

ties.

4.3. Generating Behavioral Interpretations

Based on the statement interpretations extracted from ambiguous and unambiguous behavioral state-

ments, we can generate a set of process interpretations, i.e. the behavioral space, for the entire textual

description. Algorithm 2 formalizes this generation step.

The set of process interpretations included in a behavioral space should contain all possible combina-

tions of statement interpretations for the behavioral statements. Lines 3–14 in Algorithm 2 describe the

creation of these combinations. The underlying idea is that all existing text interpretations, starting from
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Algorithm 2 Generate a behavioral space from a textual process description
1: function constructBehavioralSpace(Text text)
2: BehavioralSpace behavioralSpace = new BehavioralSpace();
3: List processInterpretations = new List();
4: processInterpretations.add(new ProcessInterpretation());
5: List newProcessInterpretations = new List();
6: for Statement s ∈ text.getStatements() do
7: List interpretations = computeStatementInterpretations(s);
8: for Interpretation i ∈ interpretations do
9: for ProcessInterpretation pi ∈ processInterpretations do

10: Interpretation newPI = pi.copy();
11: newPI.add(i);
12: newProcessInterpretations.add(newPI)
13: interpretations = newInterpretations.copy();
14: newInterpretations.clear();
15: for ProcessInterpretation pi ∈ interpretations do
16: computeFullBehavioralProfile(pi)
17: if pi.getBehavioralProfile().isConsistent() then
18: behavioralSpace.add(pi);
19: return behavioralSpace;

an empty list (line 3), are incrementally extended with a single statement interpretation (lines 8–11). This

ensures that each possible combination of statement interpretations is included in the list. For example, as

considered in the previous section, the claims handling process contains three ambiguous statements with,

respectively, two, three, and two possible interpretations. This results in a total number of 12 (2 × 3 × 2)

possible combinations of the statement interpretations and, thus, of 12 interpretations in a behavioral space

BST . After all combinations have been generated, we compute a full behavioral profile for each of the

interpretations and add them to the behavioral space (lines 15–17).

To compute the complete behavioral profile for a process interpretation (line 16), we exploit the transi-

tivity of the strict order and interleaving order relations [15]. In this way, we can obtain relations beyond

those pair-wise relations that we extracted from a textual description. For example, if a text specifies that

activity ai is followed by a j and a j is followed by ak, i.e. ai  a j and a j  ak, then ai is also followed by

ak, i.e. ai  ak. After constructing this profile, the algorithm checks the internal consistency of the behav-

ioral profile with a technique defined in [15]. We only include mutually consistent process interpretations

to the behavioral space (lines 17–18). For example, we exclude obviously incorrect interpretations in which

one statement interpretation yields the relation ai  a j and another the relation ai + a j.

Once the process interpretations have been obtained in this manner, the construction of the behavioral
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space is complete. In Section 5, we illustrate the usefulness of these spaces for compliance checking.

5. Compliance Checking using Behavioral Spaces

By capturing behavioral ambiguity in a structured manner, behavioral spaces allow us to reason about

process compliance without the need to arbitrarily settle ambiguity. In this section, we demonstrate this

by showing how to perform a compliance check of an execution trace versus a behavioral space generated

from a textual process description. The goal of compliance checking is to determine whether the behavior

captured in an execution trace is allowed by the behavioral specification of a business process [4]. The key

difference between traditional compliance checking and compliance checking using behavioral spaces lies

in the potential outcomes of a check. In traditional compliance checking, a trace is either compliant or it is

non-compliant with a business process. Due to the behavioral ambiguity captured in behavioral spaces, a

trace can be compliant or non-compliant, but also potentially compliant with a behavioral space. The latter

outcome occurs for traces that comply with one or more process interpretations in a behavioral space, but

not with all of them.

5.1. Process Interpretation Compliance

Compliance checking of a trace t against a behavioral space BST builds on the compliance checking

of t against individual process interpretations of the behavioral space. This is similar to the compliance

check of a trace and a behavioral profile, as obtained from a process model (see [17]). This check builds

on a comparison of the behavioral profile of a trace BPt to the behavioral profile relations of a process

interpretation P = (I, BP).

The behavioral profile BPt captures the strict order, exclusiveness, and interleaving order relations for

the set of activities At in a trace t. Given an activity pair (ai, a j) ∈ (At × At), BPt contains the strict order

relation ai  t a j iff at least one occurrence of activity ai precedes an occurrence of activity a j in t, and no

occurrence of a j precedes an occurrence of ai in t. BPt contains the interleaving order relation ai || a j iff at

least one occurrence of ai precedes an occurrence of a j in t, and at least one occurrence of a j precedes an

occurrence of ai in t.

Given a behavioral profile of a trace BPt and a process interpretation P ∈ BST , we can determine if t is

compliant with P = (I, BP) by checking if the relations in BPt do not violate the behavioral relations in BP.
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Specifically, t is compliant with P if all relations in BPt are subsumed by the relations in BP. A behavioral

profile relation R ∈ R is subsumed by relation R′ ∈ R if the relations are equal, i.e. R = R′, or if R′ restricts

less behavior than R. Definition 4 formally defines the notion of subsumption according to [17].

Definition 4 (Subsumption Predicate). Given two behavioral relations R,R′ ∈ { , −1,+, ||}, the sub-

sumption predicate S(R,R′) is satisfied, iff R ∈ { , −1} ∧ R′ = + or R = R′ or R = ||.

Based on the notion of subsumption, we define compliance between a trace and a process interpretation

in Definition 5.

Definition 5 (Trace to Process Interpretation Compliance). Let t be an event trace with an activity set At

and P = (I, BP) a process interpretation in the behavioral space BST with an activity set AT , such that

At ⊆ AT . Then, the compliance predicate compl(t, P) is satisfied if for each activity pair (x, y) ∈ (At × At)

the relation Rt in BPt of the pair (x, y) is subsumed by the relation RP of the pair (x, y) in BP, i.e. S(RP,Rt).

Next, we describe how to determine the compliance of a trace to a behavioral spaced based on compli-

ance checks between a trace and the space’s individual process interpretations.

5.2. Behavioral Space Compliance

To determine the level of compliance between a trace and a behavioral space, we consider the number

of process interpretations with which a trace complies. In particular, we quantify the support of a behavioral

space BST for a trace t as the ratio between the number of interpretations to which t is compliant and the

total number of interpretations in BST :

supp(t,BST ) =
|{P ∈ BST | compl(t, P)}|

|BST |
(1)

The support metric quantifies the fraction of interpretations that allow for a trace to occur. A support

value of 1.0 indicates that a trace is without any doubt compliant with the behavioral space, i.e. independent

of the chosen interpretation. A support of 0.0 shows that there is no interpretation under which a trace

complies with the behavioral space. Therefore, it can be said with certainty that the trace is non-compliant

with BST . Finally, any trace t with a support value 0.0 < supp(t,BST ) < 1.0 is potentially compliant

with BST . This implies that there are certain interpretations of the textual description to which the trace
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complies. To illustrate the usefulness of the support metric, consider the following three partial execution

traces of the running example:

• Trace t1 =< a1, a2, a3, a4, a5 >;

• Trace t2 =< a1, a3, a2, a4, a5 >;

• Trace t3 =< a11, a14, a12, a13 >.

The difference between the traces t1 and t2 is that, in t1, activity a2 occurs before a3, whereas these are

executed in reverse order in t2, i.e. a2  a3 ∈ BPt1 and a3  a2 ∈ BPt2 . Furthermore, recall that the behav-

ioral relation between these two activities is given by the ambiguous behavioral statement s2. Depending on

the interpretation of s2, there either exists a strict order or an interleaving order relation between a2 and a3,

i.e. R(a2, a3) = { , ||}. The relation a2  t1 a3 from t1 is subsumed by both possible interpretations included

in the behavioral space, since sub( , ) and sub( , ||) are both satisfied. Therefore, t1 is compliant with

all interpretations in the behavioral space and, thus, has a support value of 1.0. For trace t2 we observe a

different situation. While a3  t2 a2 in trace t2 is subsumed by relation a2 || a3, this relation is not subsumed

by a2  a3. Therefore, t2 does not comply with half of the process interpretations in the behavioral space.

This results in supp(t2,BST ) = 0.5.

Aside from providing information on the process interpretations with which a trace complies, behavioral

spaces allow us to obtain further diagnostic information from this compliance check. In particular, we can

gain insights into the conditions under which a trace is compliant with a process description. For example,

we can learn under which interpretations of the statement s3, “In the meantime, the financial department

takes care of the payment”, trace t3 is compliant. In t3, the financial department pays the settlement amount

(a14) before the claims officer records the settlement information (a12). This complies with one of the two

interpretations of statement s3 and, therefore, results in a support value of 0.5. Furthermore, we know that

this trace is compliant, if and only if “in the meantime” means “while the claims officer is performing its

tasks” and not “while the claims officer is archiving the claim”. Such diagnostic information can be useful

when interpreting the support values for a trace or when aiming to resolve the ambiguity contained in a

textual description.
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6. Pruning Behavioral Spaces based on Information Gain

This section demonstrates how the behavioral space of a textual process description can be reduced to

provide more accurate compliance-checking results. We refer to this act as pruning a behavioral space. In

particular, we present a technique that supports users in resolving behavioral ambiguity in an efficient man-

ner. The technique identifies those ambiguous behavioral statements in a textual description that lead to the

most uncertainty in compliance-checking results. To achieve this, we define a metric that captures the infor-

mation gain that can be achieved by resolving the ambiguity in behavioral statements. This metric quantifies

the amount of uncertainty in compliance-checking results caused by a particular ambiguous behavioral state-

ment. Therefore, information gain illustrates how much compliance-checking uncertainty can be removed

by resolving the ambiguity in a particular statement. It serves a similar purpose as the information-gain

metric used in the context of decision trees to quantify reductions in information entropy (cf. [18, 19]). Be-

fore introducing the information-gain metric, we first consider how compliance-checking uncertainty can

be reduced by resolving ambiguous statements and, thereby, pruning a behavioral space.

6.1. Compliance-Checking Uncertainty

In Section 5, we demonstrated that behavioral spaces allow for reasoning about compliance without the

need to resolve behavioral ambiguity. This is achieved by introducing the notion of potential compliance,

which captures situations where a trace is compliant to some process interpretations, but non-compliant

to others. Such a classification provides valuable information, especially in the context of the diagnostic

information that can be associated with it, i.e. for which statement interpretations a trace is compliant or

non-compliant. Still, such cases represent a form of unclarity in the compliance-checking results, because

it is not known if a trace is actually compliant or not. We will refer to this state as compliance-checking

uncertainty.

The accuracy of compliance-checking results can be improved by reducing the level of compliance-

checking uncertainty. This can be achieved by resolving the cause of ambiguity in ambiguous statements.

For instance, by replacing an ambiguous type indicator such as “and” with either “and, then” or with “and,

meanwhile”. In these cases, there are less potentially compliant traces and more traces for which it can be

stated with certainty that they are compliant or not. Behavioral spaces represent a powerful tool to support
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users in this endeavor. First, behavioral spaces support the improvement of compliance checking accuracy

by providing insights into the causes (i.e. the ambiguous statements) and the effects (i.e. the different in-

terpretations) of behavioral ambiguity. For instance, the behavioral space shows us that statement s2 from

the running example is ambiguous. Therefore, it is clear that if a user decides to resolve this ambiguity by

selecting the correct interpretation of s2, we reduce the overall compliance-checking uncertainty. Second,

behavioral spaces can support users even further by letting them focus their resolution efforts on the am-

biguous statements that are the greatest causes of compliance-checking uncertainty. We achieve this with

the information-gain metric that we introduce next.

6.2. Information Gain

We introduce information gain (IG) as a metric that describes how much compliance-checking uncer-

tainty can be resolved by selecting a single interpretation for an ambiguous statement. A proper quantifi-

cation for this gain is to consider for how many traces the interpretations of a single ambiguous statement

disagree about their compliance. By resolving the ambiguity in statements of which the interpretations dis-

agree about the largest number of traces, a maximum of compliance-checking uncertainty can be removed.

We define IG for a set of statement interpretations Γ and a set of traces (i.e. a log) L in Equation 2.

IG(Γ, L) = |
⋃
γ∈Γ

CL(γ) −
⋂
γ∈Γ

CL(γ)| (2)

In this equation, we use CL(γ) to refer to the set of traces from L that are compliant to the behavioral

relations that comprise a statement interpretation γ. IG(Γ, L) specifies the size of the set of traces that

are compliant to at least one interpretation, but also non-compliant to at least one interpretation. This is

computed by taking all traces that are allowed according to at least one interpretation in Γ, i.e. the union of

all sets CL(γ) for γ ∈ Γ, minus those traces that are allowed by all interpretations in Γ, i.e. the intersection

of these sets.

The metric IG can be applied in two different ways, depending on the availability of an event log. If an

event log is not available, a log LG can be generated that contains all traces that are potentially compliant

to the behavioral space BS. In this case, IG(Γ, LG) can be used to identify those phrases that lead to the

biggest potential reduction in ambiguity. However, if an event log LR related to the process is already
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available, the information-gain metric can be used to compute the information gain in the context of truly

observed behavior. In this case, IG(Γ, LR) represents the gain in ambiguity specific to the event log LR.

To illustrate the usage of IG, consider the statements s2 and s3 used throughout this paper (introduced

in Table 2) and a log L with (partial) execution traces:

• t1 =< a2, a3, a12, a13, a14 >

• t2 =< a2, a3, a14, a12, a13 >

• t3 =< a2, a3, a14, a12, a13 >

• t4 =< a3, a2, a14, a13, a12 >

Recall that statement s2 has two interpretations, with the following sets of behavioral relations: {a2  

a3} and {a2 || a3}. It can be easily observed that these statements disagree about any trace in which a3 occurs

before a2, i.e. of which the behavioral profile contains a3  t a2. Trace t4 is the only trace in L for which

this is the case. Therefore, IG(Γs2 , L) = 1. To compute IG for statement s3, it suffices to consider the

most restrictive and most flexible interpretations of the statement. The most restrictive interpretation states

that a14 can only be executed in parallel, i.e. possibly before, activity a13. By contrast, the most flexible

interpretation of s3 specifies that a14 is in an interleaving order with a11, a12, and a13. This means that

from log L, only trace t1 is compliant to the former interpretation, whereas all four traces are compliant to

the latter interpretation of s3. Therefore, three traces in L are in dispute by the interpretations in Γs3 , i.e.

IG(Γs3 , L) = 3. From this, it can be concluded that the resolution of ambiguity in statement s3 has a greater

impact on the ambiguity in log L than the resolution of s2.

By computing IG for all ambiguous statements in a behavioral space and resolving the statements with

the highest information gain, users can efficiently reduce the level of compliance-checking uncertainty. As

such, the behavioral space will be pruned by removing process interpretations that are not compliant with

the resolved ambiguity. This greatly enhances the efficient usage of the notion of behavioral spaces for

compliance checking.

7. Evaluation

In this section, we evaluate the usefulness of behavioral spaces for compliance checking in the context

of ambiguous textual process descriptions. For this purpose, we conduct a two-stage evaluation. First, we

assess the impact that the consideration of behavioral spaces has on compliance-checking results. In par-

ticular, we compare the compliance-checking results obtained by using behavioral spaces to two alternative
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ways of dealing with behavioral ambiguity. Second, we demonstrate the effectiveness of the proposed IG

metric for the reduction of uncertainty in compliance-checking results.

In the remainder, Section 7.1 first introduces the test collection used in both parts of the evaluation.

Then, Sections 7.2 and 7.3 respectively describe the evaluation of the compliance-checking results and of

the IG metric. Finally, we discuss limitations of the evaluation results in Section 7.4.

7.1. Test Collection

To perform our evaluation, we reuse the collection of textual process descriptions from the text-to-model

generation approach by Friedrich et al [9]. The collection contains 47 process descriptions from various

industrial and scholarly sources. Table 4 gives an overview of the characteristics of the test collection.

Table 4: Overview of the test collection

ID Source Type PD S L

1 HU Berlin Academic 4 10.0 18.1
2 TU Berlin Academic 2 34.0 21.2
3 QUT Academic 8 6.1 18.3
4 TU Eindhoven Academic 1 40.0 18.5
5 Vendor Tutorials Industry 4 9.0 18.2
6 inubit AG Industry 4 11.5 18.4
7 BPM Practitioners Industry 1 7 9.7
8 BPMN Practice Handbook Textbook 3 4.7 17.0
9 BPMN Guide Textbook 6 7.0 20.8

10 Federal Network Agency Public Sector 14 6.4 20.0

Total 47 9.2 17.2

Legend: PD = Number of process descriptions per source,
S = Average number of sentences, L = Average number of
words per sentence

The data from Table 4 illustrate that the included process descriptions differ greatly in size. The average

number of sentences ranges from 4.7 to 34.0. The longest process description contains a total of 40 sen-

tences. Furthermore, the descriptions differ in the average length of the sentences. While the BPM Practi-

tioners source contains process descriptions with rather short sentences (9.7 words), the process descriptions

from the TU Berlin source contain relatively long sentences (21.2 words). Lastly, the process descriptions

differ in terms of how explicitly and unambiguously they describe the process behavior. Among others, this

results from the variety of authors that created the textual descriptions. Hence, we believe that the collection
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is well-suited for achieving a reasonably high external validity of the results.

7.2. Compliance Evaluation

To demonstrate the usefulness of behavioral spaces for compliance checking, we compare the compliance-

checking results obtained by using behavioral spaces to two alternative ways of dealing with behavioral

ambiguity. These two alternatives are: (i) imposing assumptions on the correct interpretation of behavioral

statements, and (ii) ignoring ambiguous statements because they cannot be resolved. The goal of this part

of the evaluation is to show that behavioral spaces provide a much more reasonable view on the process

behavior allowed by a textual process description, when compared to the two alternatives. Section 7.2.1

describes the details of the setup used for this step. In Section 7.2.2, we present and discuss the results.

7.2.1. Setup

To conduct the evaluation, we implemented a prototype to generate behavioral spaces from textual

process descriptions. To achieve this, we build on the state-of-the-art text-to-process model generation

approach by Friedrich et al. [9]. In particular, our Java prototype uses a library that is part of the RefMod-

Miner3, which implements the process model generation approach in a stand-alone tool. We use the library

to automatically identify activities and extract behavioral profile relations that exist between activities.

We compare the compliance-checking results obtained by using behavioral spaces to two alternative

ways of dealing with behavioral ambiguity. The first alternative reflects the possibility to deal with behav-

ioral ambiguity by imposing assumptions on the correct interpretation of a text, i.e. by selecting a single

interpretation for each ambiguous behavioral statement. Second, it is possible to deal with behavioral am-

biguity by ignoring all ambiguous statements and, thus, only focusing on the behavioral relations that can

be extracted with certainty from a text. Given these alternatives to behavioral spaces, we generate three

behavioral models (BMs) for each of the 47 textual process descriptions as follows:

1. Fully interpreted behavioral profile (BPfull): This behavioral model reflects an approach that im-

poses assumptions on the correct interpretation of ambiguous statements. To obtain BP f ull, we gen-

erate a process model by using the text-to-model generation approach from [9] and, subsequently,

extracting a behavioral profile from this model;

3http://refmod-miner.dfki.de
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2. Minimally restricted behavioral profile (BPmin): This behavioral model reflects an approach in

which ambiguous statements are fully ignored. The resulting behavioral profile only captures the

behavioral relations that can be extracted with certainty from the textual process description. To

obtain BPmin, we remove all behavioral profile relations from BP f ull that were extracted from the

analysis of ambiguous behavioral statements;

3. Behavioral space (BS): The behavioral space generated for the textual description in accordance

with the interpretation generation method described in Section 4.

We conduct our evaluation by comparing the sizes of the sets of traces that are (potentially) compliant

with the three behavioral models, in accordance with the definitions provided in Section 5.4 Using C(BM)

to refer to the collection of traces that are compliant or potentially compliant to a behavioral model BM, we

quantify the size differences using the following two metrics:

R1 =
| C(BS) |
| C(BPmin) |

(3) R2 =
| C(BP f ull)) |
| C(BS) |

(4)

R1 quantifies the ratio between the number of traces allowed by a behavioral space and a minimally

restricted behavioral profile. This measure reflects how much behavior that certainly does not comply with

t is allowed when ambiguous statements are ignored. R2 quantifies the ratio between the number of traces

allowed by a behavioral space and those allowed by a fully interpreted behavioral profile. This measure

reflects how much behavior that is possibly compliant to t is marked as noncompliant by an approach that

imposes assumptions on ambiguous statements.

7.2.2. Results

Table 5 summarizes the evaluation results. The first interesting thing to note is how common textual

process descriptions with behavioral ambiguity are. In total, 32 of the 47 textual process descriptions (70%)

contained one or more ambiguous phrases. The majority of these cases, 28 in total, included just phrases

with type ambiguity. Four cases contain statements with scope ambiguity, 3 of which also contain behavioral

statements with type ambiguity.

4For processes that contain loops, we only include traces with at most one repetition.
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Table 5: Evaluation results

Collection P Stype Sscope A |PI| R1 R2

Only type ambiguity 28 64 0 19.6 11.0 100.0% 37.8%
With scope ambiguity 4 13 4 24.0 76.5 16.4% 0.5%

Total 32 77 4 20.2 19.1 89.5% 33.7%

Legend: P = number of processes, S type = statements with type ambigu-
ity, S scope = statements with scope ambiguity, A = extracted activities per
process (avg.), |PI| = interpretations per behavioral space.

For processes with just type ambiguity in their descriptions, there is a clear difference between the

behavior allowed by fully interpreted behavioral profiles C(BP f ull) and the behavior allowed by behavioral

spaces C(BS). As indicated by metric R2, the fully interpreted behavioral profiles allow for only 37.8%

of the behavior allowed by the behavioral space. For the remaining 62.2% of the traces, we cannot state

with certainty that they do not comply with the process described in the text. This difference results from

ordering restrictions that the text-to-model generation algorithm imposes on activities, even when these

ordering restrictions may not exist. Behavioral spaces do not impose such restrictions and, thus, mark traces

that exhibit such execution flexibility as potentially compliant. This consideration of the cases with type

ambiguity already illustrates the impact of assumptions on compliance checking. Nevertheless, this impact

is much more severe for textual process descriptions that also contain statements with scope ambiguity.

Legend:
C(BP f ull)
C(BS)
C(BPmin)

Figure 4: Visualization of three sets of compliant traces for cases with scope ambiguity.

The behavioral models for the 4 cases with scope ambiguity show much larger differences among the

behavior they allow. We visualize the relative sizes of the three sets of compliant traces in Figure 4. The
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light-gray area denotes the set of traces compliant with BPmin, i.e. the set of traces that remain when treating

ambiguous statements as undecidable. The behavior allowed by the behavioral space, represented by the

dark-gray area, is considerably smaller, as also indicated by the R1 score of 16.4%. This number reveals

that 83.6% of the traces in C(BPmin) are not compliant with any reasonable interpretation of the statements

with scope ambiguity. Figure 4 also shows the considerable impact that the usage of single interpretations

has on the number of compliant traces. The tiny size of the black area in the figure and the R2 score of

0.5% both indicate that, for the cases with scope ambiguity, the fully interpreted behavior profiles allow

for only a very small fraction of the behavior that is (potentially) compliant to a behavioral space. Again,

the remaining 99.5% represent traces that do not necessarily conflict with behavior specified in a textual

process description.

The evaluation results show the impact both of ignoring ambiguous statements and of imposing single

interpretations on them. As visualized by Figure 4, behavioral spaces provide a balance between these

loosely restricted and too restricted behavioral models. In summary, behavioral spaces exclude a large

number of nonsensical traces, which can be excluded by generating proper interpretations for ambiguous

statements. Still, they allow for much more traces than the restricted models that are obtained by imposing

assumptions on the ambiguous statements in textual descriptions.

7.3. Pruning Evaluation

In the second part of the evaluation, we set out to demonstrate how effective the proposed pruning

technique is at reducing uncertainty in compliance-checking results. Specifically, we assess how quickly

compliance uncertainty can be reduced when we employ the IG metric, introduced in Section 6, to select

ambiguous phrases. As a benchmark, we compare the results obtained in this manner to a random selection

mechanism. Section 7.3.1 describes the setup of this part of the evaluation, followed by a presentation of

the results in Section 7.3.2.

7.3.1. Setup

To evaluate the effectiveness of the IG metric, we make use of the behavioral spaces generated for the

textual descriptions in the previous part of the evaluation. Specifically, we select the behavioral spaces for

the 17 textual descriptions with more than one ambiguous behavioral statement. For these cases it is relevant
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to determine which ambiguous phrase should be resolved first. To compute values for the IG metric, we

generate a log Lt for each textual description T that contains all traces that are potentially compliant to the

behavioral space BS.

In this evaluation, we are interested in how much we can reduce compliance-checking uncertainty by

using IG to select the ambiguous phrases we resolve first. We quantify this reduction by comparing the

number of potentially compliant traces that remain after resolving the ambiguity in a statement to the origi-

nal number of potentially compliant traces. Again, we use C(BS) to denote the set of potentially compliant

traces for a given behavioral space BS. Then, we compute the fraction of compliance uncertainty that re-

mains after resolving k ambiguous statements as given by Equation 5. Here, BSk represents the behavioral

space that remains after resolving k ambiguous statements. BS0 represents the behavioral space for which

no ambiguity is resolved.

U(BS, k) =
|C(BSk)|
|C(BS0)|

(5)

We compute the value U(BS, k) for each k ∈ 1, . . . , n, where n is the number of ambiguous statements in

BS. As a benchmark, we compare these values against the uncertainty that remains after randomly selecting

ambiguous statements to resolve. In particular, we compute the average value of U(BS, k) for each of the

n! different orders in which ambiguous statements can potentially be selected. As such, this benchmark

mimics the situation in which people blindly select ambiguous statements to resolve.

7.3.2. Results

Figure 5 visualizes the evaluation results. The curves represent the average reduction in uncertainty over

the 17 relevant cases. The figure shows considerable differences between the reduction obtained by using

the information gain metric versus the reductions obtained through random selection.

When interpreting these results, it is important to recognize that the minimum uncertainty reduction per

statement observed in the test collection is 50.0%. This quantity represents the amount of uncertainty that is

removed when resolving the most simple form of an ambiguous statement: a statement with type ambiguity

between just two activities. Therefore, the reduction of 63.7% that is obtained by randomly resolving a

single ambiguous statement appears is only 13.7% higher than the minimum improvement per statement. In
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Figure 5: Visualization of three sets of compliant traces for cases with scope ambiguity.

comparison, usage of the IG metric results in a removal of 79.7% of the compliance-checking uncertainty

in the first step. This reflects an improvement of 29.7 percentage points above the minimum improvement

per statement. Therefore, the information gain metric leads to an improvement that is more than twice as

high as random selection.

The 79.7% reduction in uncertainty demonstrates that, in many textual descriptions, a single statement

has a much bigger impact on the ambiguity than the others. These statements are typically the ones with

scope ambiguity. This is the case because scope ambiguity results in a high number of potentially compliant

traces, usually caused by interpretations with a considerable number of activities with interleaving order

relations. This is, for instance, shown for statement s3 considered in the running example of this paper.

Similarly, statements with type ambiguity among more than two activities result in an increased number of

interleaving order relations compared to statements with ambiguity between just two activities. Therefore,

these statements result in a high number of potentially compliant traces. By resolving these ambiguous

statements first, the information gain metric can be used to quickly resolve the vast majority of compliance-

checking uncertainty.

7.4. Limitations

Our evaluation demonstrates the usefulness of behavioral spaces for reasoning about process compliance

in the context of textual process descriptions. However, the evaluation results should be considered against

28



the background of some limitations. In particular, we are able to identify limitations related to the behavioral

space generation approach, to the compliance-checking technique, and limitations related to the evaluation.

7.4.1. Generation Approach

Limitations related to the generation approach concern two facets. First, it has to be considered that

the natural language processing techniques on which we build our approach are not fully accurate. The

model generation approach from [9] is heuristics-based, which means it does not cover all possible linguistic

patterns that can be used to express behavioral relations. For instance, the approach cannot handle constructs

corresponding to OR-gateways in process models, such as “At least two of the following three activities

should be performed”. However, since this approach represents the state of the art, it does provide an

accurate reflection of the quality of model generation approaches. Furthermore, it is important to stress

that our generation approach is largely independent of the underlying model generation approach. As long

as this approach can provide information regarding source, relation type, and target references, behavioral

spaces can be generated according to the algorithms detailed in Section 4.1.

Second, it has to be taken into account that we generate interpretations for statements with scope am-

biguity based on three commonalities. While these commonalities represent the plausible options in the

context of process descriptions, it is possible that, in certain situations, other properties are necessary to

capture the set of activities to which a statement refers. Still, the behavioral space will identify such state-

ments as ambiguous and help users to analyze the impact of this ambiguity on compliance checks.

7.4.2. Compliance Checking

A point of consideration regarding our compliance-checking technique is that we perform compliance

checks based on behavioral profiles. The expressive power of these relations has been shown to be less

than that of process modeling notations such as Petri nets, which are used by certain other compliance-

checking techniques [4]. Because of this lack of expressive power, behavioral profiles abstract from certain

process behavior. As a result, compliance checking based on behavioral profiles is less restrictive than

compliance checking techniques based on Petri nets. [20] provides a detailed overview of the restrictions

on expressiveness. Nevertheless, we have selected behavioral profiles because they enable highly efficient

compliance checks, which is an important prerequisite given the numerous possible process interpretations
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that can exist in behavioral spaces. Furthermore, by using behavioral predicates to express behavioral

relations, we are able to combine the implications of different statement interpretations in an intuitive and

safe manner. Lastly, it is important to stress that the notion of a behavioral space as a basis for compliance

checking is independent of the underlying compliance measures. As long as behavioral spaces are used to

capture the various interpretations of ambiguous process descriptions, the same reasoning can be directly

transferred to other notions of process compliance.

7.4.3. Evaluation

As for limitations related to the evaluation, we would like to point out that the presented quantitative

results are bound to the specifics of the textual process descriptions included in the test collection. The

employed data collection does not form a statistically representative sample. In fact, the creation of such

a sample is hardly feasible since natural language offers such a high degree of freedom. However, the

data set is composed of several heterogeneous sources and contains a considerable degree of ambiguity.

Furthermore, this data set has been previously used to evaluate the process model generation approach of

Friedrich et al. [9]. Therefore, we are confident that our evaluation shows a realistic picture of the impact

of behavioral ambiguity in practical settings.

8. Related Work

The work presented in this paper primarily relates to three major research streams: compliance check-

ing, the analysis of textual process descriptions, and the representation of data uncertainty. In the remainder

of this section, we describe each of these related areas.

8.1. Compliance Checking

Process compliance checking or conformance checking involves the comparison of different behavioral

specifications. These techniques are applied in various application scenarios, including process query-

ing [6], legal compliance [21], and auditing [2]. Most compliance checking techniques focus on the com-

parison of observed process behavior, as captured in execution traces, to a process specification. A plethora

of techniques exist for this purpose (cf. [4, 22, 23, 24]). In this paper, we used techniques that perform com-

pliance checks against behavioral profiles, introduced in [5]. The advantage of these techniques is their high
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computational efficiency. Therefore, they represent an attractive choice for compliance checking against be-

havioral spaces, which can contain a vast number of different behavioral interpretations. However, other

commonly used techniques compare execution traces to process models based on so-called alignments.

These techniques (cf. [4, 23]) provide different diagnostic information than compliance checks based on

behavioral profiles. Furthermore, the compliance checks can be considered to be more accurate in some

situations, because behavioral profile relations abstract from certain details of process behavior. It is im-

portant to emphasize at this point that the notion of a behavioral space, which consists of different process

interpretations, can be easily translated to other compliance checking notions, such as alignment-based

checks.

The aforementioned compliance checking techniques all rely on a structured specification of the be-

havior allowed for a process, e.g. in the form of process models. In earlier work, we introduced the first

compliance checking approach that works with textual process descriptions [25], a less structured repre-

sentation format. The current manuscript extends the earlier conference paper in three ways. First, we

provided detailed descriptions of the algorithms and dictionaries used to automatically generate behavioral

spaces from textual process descriptions. Second, we introduced a method to reduce the level of uncertainty

in compliance checking results by supporting users in the efficient resolution of ambiguous parts of a tex-

tual description, a so-called pruning method. Lastly, we have extended the evaluation to demonstrate the

usefulness of our pruning method.

8.2. Analysis of Textual Process Descriptions

The majority of works that consider the analysis of textual artifacts related to business processes focus

on the automated derivation of process models from them. Respective techniques have been designed for

textual process descriptions [9, 26], group stories [13], use case descriptions [14], and textual methodolo-

gies [27]. From these, the text-to-model generation technique from Friedrich et al. [9] is typically recog-

nized as the state of the art [28]. Therefore, we used it as a basis for our own prototype and as a benchmark

for our evaluation. Though none of these existing works mentions the problem of behavioral ambiguity ex-

plicitly, all techniques impose assumptions on the interpretation of ambiguous behavioral statements. This

results in a single interpretation, i.e. a process model, for any given text. However, this comes with the great

disadvantage that the behavior allowed by this representation is much stricter than the behavior specified
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in the textual description. Our earlier works on the comparison of textual process descriptions to process

models [29, 30] face similar issues when reasoning about the consistency of the two artifacts.

8.3. Representing Data Uncertainty

Similar to behavioral ambiguity in textual process descriptions, ambiguous or uncertain data is also

present in other application contexts. In these cases, uncertainty can be caused by, among others, data

randomness, incompleteness, and limitations of measuring equipment [31]. This has created a need for

algorithms and applications for uncertain data management [32]. As a result, the modeling of uncertain

data has been studied extensively (cf. [33, 34, 35, 36]). Our notion of a behavioral space builds on concepts

related to those used in uncertain data models. For instance, similar to the behavioral interpretations cap-

tured in a behavioral space, the model presented by Das Sarma et al. [36] uses a set of possible instances

to represent the spectrum of possible interpretations for an uncertain relation. Furthermore, the model de-

scribed in [33] uses conditions to capture dependencies between uncertain values. This notion has the same

result as the sets of behavioral relations that we derive from uncertain behavioral statements and convert

into different behavioral interpretations. Still, the technical aspects and application contexts of these uncer-

tain data models, which mostly relate to querying and data integration [32], differ considerably from the

process-oriented view of behavioral spaces.

9. Conclusions

In this paper, we introduced the concept of a behavioral space to deal with the ambiguity in textual

process descriptions. A behavioral space captures all possible interpretations of a textual process descrip-

tion. In this way, it avoids the issue of focusing on a single process-oriented interpretation of a text. We

demonstrated that a behavioral space is a useful concept for reasoning about a process described by a text.

In particular, we used a quantitative evaluation with a set of 47 textual process descriptions to illustrate

that a behavioral space strikes a reasonable balance between ignoring ambiguous statements and imposing

fixed interpretations on them. Furthermore, we demonstrated the usefulness of a semi-automated pruning

technique to quickly reduce the level of uncertainty remaining in compliance-checking results.

While we defined the behavioral space concept based on textual process descriptions, we would like to

point out that its use is not limited to pure text. A behavioral space can also help to capture the full behavior
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of other types of ambiguous process representations. Consider, for instance, process models containing

activities that describe several streams of actions by using ambiguous behavioral statements such as “and”.

It has been found that such non-atomic activities can result in different interpretations of how to properly

execute the process [37]. A behavioral space would also be useful for application scenarios beyond com-

pliance checking. In future work, we set out to explore these usage scenarios of behavioral spaces in more

detail.
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