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Abstract. Process mining enables organizations to capture and improve
their processes based on fact-based process execution data. A key ques-
tion in the context of process improvement is how responses to an event
(action) result in desired or undesired outcomes (effects). From a pro-
cess perspective, this requires understanding the action-response pat-
terns that occur. Current discovery techniques do not allow organiza-
tions to gain such insights. In this paper we present a novel approach to
tackle this problem. We propose and formalize a technique to discover
action-response-effect patterns. In this technique we use well-established
statistical tests to uncover potential dependency relations between each
response and its effects on the cases. The goal of this technique is to pro-
vide organizations with processes that are: (1) appropriately represented,
and (2) effectively filtered to show meaningful relations. The approach is
evaluated on a real-world data set from a Dutch healthcare facility in the
context of aggressive behavior of clients and the responses of caretakers.

Keywords: Effect Measurement · Process Discovery · Healthcare · Pat-
terns.

1 Introduction

The desire to improve organizational processes has led to the adoption of process
mining in many industries [11,23]. One of the key advantages of process mining is
that it enables organizations to understand, analyze, and improve their processes
based on process execution data, so-called event logs. Such event logs capture
how organizational processes are actually executed and can be extracted from
various information systems that are used in organizations [1].

While the advantages of process mining have been demonstrated in many
domains, the application of process mining is still associated with different chal-
lenges. One particularly important challenge is to provide the user with a process
representation that a) is easy to understand and b) allows the user to obtain
the required insights about the process execution. To this end, various process
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discovery algorithms have been proposed, including the heuristic miner [27], the
fuzzy miner [15], and the inductive miner [17]. What all of these algorithms have
in common is that they focus on discovering the control flow of a process, i.e.,
the order constraints among events.

In many scenarios, however, the control flow perspective is not sufficient for
understanding and improving the process. As an example, consider the care pro-
cess of a residential care facility supporting clients with their daily needs. The
main goal of this process is to ensure the well-being of clients. One of the main
factors negatively affecting the well-being of clients are incidents of aggressive be-
havior, e.g. when clients verbally or physically attack other clients or staff. Staff
responds to aggressive incidents with one or multiple measures ranging from
verbal warnings to seclusion. A key question in the context of process improve-
ment is which of these measures lead to desired (i.e., de-escalation of aggressive
behavior) or undesired (i.e., escalation of aggressive behavior) outcomes.

From a process perspective, this requires understanding the action-response-
effect patterns. In the healthcare process, we consider the aggressive incidents as
actions, the countermeasures taken to the incident as responses, and the follow-
up incidents as effects. Action-response-effect patterns are not accounted for in
existing discovery algorithms. As a result, their application to such event logs
leads to a process representation that is either hard to read (because it contains
too many connections) or it does not allow the user to obtain actual insights
about the process (because it does not show the effect of behavior).

Recognizing the limitation of existing algorithms with respect to showing
meaningful insights into action-response-effect patterns, we use this paper to
propose a novel discovery technique. We leverage well-established statistical tests
to analyze event logs in order to discover simplified graphical representations of
business processes. We simplify the resulting models by highlighting the sta-
tistically significant dependency relations according to statistical tests, while
insignificant relations are hidden. We conduct an evaluation with an event log
from a Dutch residential care facility containing a total of 21,706 aggression in-
cidents related to 1,115 clients. We show that our technique allows to obtain
important insights that existing discovery algorithms cannot reveal.

The rest of the paper is organized as follows. Section 2 describes and exem-
plifies the problem of discovering action-response-effect patterns. Section 3 in-
troduces the formal preliminaries for our work. Section 4 describes our proposed
technique for discovering action-response-effect patterns. Section 5 evaluates our
technique by applying it to a real-world data set. Section 6 discusses related work
and Section 7 concludes the paper.

2 Problem statement

Many processes contain action-response-effect patterns. As examples consider
healthcare processes where doctors respond to medical conditions with a num-
ber of treatments, service processes where service desk employees respond to
issues with technical solutions, and marketing processes where customers may



Discovering Action-Response-Effect Patterns 3

EID CID Timestamp action Response(s)

1 1 12-05 09:53 VA Warning
2 1 13-05 13:35 PO Distract Client, Seclusion
3 1 26-05 09:32 VA Warning
4 1 26-05 11:02 PP Distract Client
5 2 21-06 14:51 VA Distract Client
6 1 23-06 21:23 VA Distract Client
7 2 24-06 17:02 VA -
8 3 29-08 11:22 VA Warning
9 3 31-08 08:13 PO Warning, Seclusion
10 3 31-08 10:48 PP Distract Client

Legend : EID = Event identifier, CID = Client identifier,
VA = Verbal Aggression, PP = Physical Aggression
(People), PO = Physical Aggression (Objects),

Table 1: Excerpt from an action-response log of a care process

respond to certain stimuli such as ad e-mails with increased demand. Let us
reconsider the example of the healthcare process in a residential care facility in
order to illustrate the challenge of discovering an understandable and informing
process representation from an event log containing action-response relations.
The particular aspect of interest are incidents of aggressive behavior from the
clients and how these are handled by staff. Table 1 shows an excerpt from a re-
spective event log. Each entry consists of an event identifier EID (which, in this
case, is equal to the incident number), a case identifier CID (which, in this case,
is equal to the client identifier), a timestamp, an aggressive incident (action),
and one or more responses to this event.

Figure 1 a) shows the directlyfollows-graph that can be derived from the
events of this log. It does not suggest any clear structure in the process. Al-
though this graph is only based on twelve events belonging to three different
event classes, it seems that almost any behavior is possible. In addition, this
representation does not provide any insights into certain hidden patterns [2].
However, if we take a closer look, we can see that there are effects to a certain
response. For instance, we can see that over time the aggressive incidents related
to client 1 escalate from verbal aggression to physical aggression against objects
and people. The verbal aggression event in June (EID = 6) is probably unrelated
to the previous pattern since it occurs several weeks after. To gain an even deeper
understanding, we need to take both the response and its effect into account.
Both client 1 and 2 escalate from verbal aggression to physical aggression after
the verbal aggression was only countered with a warning.

These examples illustrates that explicitly including the responses and effects
in the discovery process is important for answering the question of how to pos-
sibly respond to an action when a certain effect (e.g. de-escalating aggressive
behavior) is desired. Therefore, our objective is to discover a model that: (1)
shows the action-response-effect process, and (2) reveals the dependency pat-
terns of which responses lead to a desired or undesired outcomes (effect). There
are two main challenges associated with accomplishing this:

1. Graphical representation: From a control-flow perspective, action-response
relations are a loop consisting of a choice between all actions and a subse-
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(a) Directly-follows graph

Physical Agression
(People)

Physical Agression
(Objects)

Verbal Agression

Warning

Distract Client

Seclusion

(b) Petri net

Fig. 1: Representations resulting from the action-response log from Table 1

quent and-split that allows to execute or skip each responses. Figure 1 b)
illustrates this by showing the Petri net representing the behavior from the
log in Table 1. Obviously, this representation does not allow to understand
which responses lead to a desired or undesired effect.

2. Effective filtering mechanism: The possible number of responses calls for a
filtering mechanisms that allows to infer meaningful insights from the model.
In the example above, we only have three event classes and three event re-
sponse classes (plus the “no response”). This results in eight possible re-
sponses. In case of 5 response event classes, we already face 32 (=25 possible
responses. Including all these response arcs in a model will likely lead to an
unreadable model that does not allow to infer the desired insights.

In the next sections, we propose a technique that creates graphical represen-
tations of dependency patterns in action-response effect logs.

3 Preliminaries

In this section, we formalize the concept of action-response-effect event logs.

Definition 1 (Action-Response-Effect Log). Let E be the universe of event
identifiers. Let C be the universe of case identifiers. Let d1, ..., dn be the set of
attribute names (e.g., timestamp, resource, location). Let A be the set of actions
and R a finite set of responses. An action-response log L is defined as L =
(E, πc, πl, πr, πd1 , ..., πdn , <), where

– E ⊆ E is the set of events,
– πc : E → C is a surjective function linking events to cases,
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ID Timestamp Action Response(s) Effect

1 12-05 09:53 VA Warning PO
1 13-05 13:35 PO Distract Client, Seclusion τ
1 26-05 09:32 VA Warning PP
1 26-05 11:02 PP Distract Client τ
2 21-06 14:51 VA Distract Client VA
1 23-06 21:23 VA Distract Client τ
2 24-06 17:02 VA - τ
3 29-07 11:22 VA Warning PO
3 31-07 08:13 PO Warning, Seclusion PP
3 31-07 10:48 PP Distract Client τ

Legend : VA = Verbal Aggression, PP = Physical Aggression
(People), PO = Physical Aggression (Objects)

Table 2: Excerpt of the event log action-response-effect

– πl : E → A is a surjective function linking events to actions,
– πr : E → 2R is a surjective function linking events to a set of responses,
– πnext : E → C is a surjective function linking events to the effects,
– πdi : E → U is a surjective function linking the attribute di of each event to

its value,
– < ⊆ E × E is a strict total ordering over the events.

Given an action-response log L according to Definition 1, we shall use the
shorthand notation σ = 〈e1, . . . , en〉 in the remainder of this paper to refer
to an event trace that consists of n events with an identical case identifier.
Furthermore, for any pair of events ei and ej with i < j, it holds that ei < ej
according to the strict total ordering of the events in log L.

The set of response events {re1, . . . , ren} of an event e is given by the func-
tion πr, we write πr(e) = {re1, . . . , ren}. For each trace σ = 〈e1, . . . , en〉, the se-
quence of responses is 〈πr(e1), . . . , πr(en)〉. For example, in the action-response
log listed in Table 1, for event e1: πc(e1) = 1 is the case of event e1, πl(e1) =
“Verbal Aggression” is the action of e1, and πr(e1) = {“Warning”} is the set of
responses of e1.

Effects of Responses. As we discussed, we aim to investigate whether a certain
response to an action has an effect on the follow-up event. As such, we measure
the effectiveness of a response to an action by studying the effect. For this aim,
we first define the effects of events by using function πnext and introducing
parameter ε for elapsed time. For each trace σ = 〈e1, ..., en〉, we define the effect
for each ei, where 1 ≤ i < n as follows: if the elapsed time to the next event
ei+1 is less than ε, the effect πnext(ei) of ei is the action of ei+1, else we say
that the effect is a silent action τ . Formally, if πtime(ei+1)− πtime(ei) ≤ ε, then
πnext(ei) := πaction(ei+1), else πnext(ei) := τ .

To test the hypothesis whether an effect is independent of the response to an
action, the number of observed events is compared to the number of expected
events of different responses and effects. To calculate the number of observed
events, we create a matrix (table) where each cell is filled with the number
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of observed events of a response and an effect. Let a ∈ A be an action, R =
{r1, · · · , rm} be a set of responses, and C = {c1, · · · , cn} a set of effects. We
define a |R| × |C| matrix, where each row represents a response ri, each column
represents an effect cj , and each cell counts the number of observed events that
have response ri and effect cj . We have

freqa,R,C =


f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n

...
...

. . .
...

fm,1 fm,2 · · · fm,n


where

fi,j = freqL(a, ri, cj) = |{e ∈ L | πl(e) = a ∧ ri ∈ πr(e) ∧ πnext(e) = cj}| (1)

For instance, given a log L as listed in Table 2, freqL(“VA”, “Warning”, “PO”)
=|{e1, e8}|= 2. Considering Table 3 and omitting the column totals and row to-
tals, it exemplifies a matrix freqa,R,C . If the effects are independent of responses,
then we should observe that the distribution of effects of a response is similar to
the total distribution.

Each row ri presents the distribution of effects c1, ..., ck to the response ri.
To test whether each individual response ri has an influence on the effects, we
define freqa,r,C as a 2× |C| matrix:

freqa,r,C =

(
f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n

)
where f1,j = freqL(a, r, cj) and

f2,j = |{e ∈ L | πl(e) = a ∧ r /∈ πr(e) ∧ πnext(e) = cj}| (2)

An example of freqa,r,C where r is “Terminate contact” is listed in Table 4.
In the following section, our approach first performs a chi-squared test which
allows us to calculate the expected values and test the dependency between
responses and effects. The chi-square test compares the observed frequencies to
the expected frequencies. If they differ significantly, then the null hypothesis is
rejected, which means we cannot rule out that there is a dependency relation
between the response and the effect.

The complete event logs containing action-response-effect are used in the
technique proposed in this paper. The next section elaborates on this.

4 Discovery technique for action-response logs

In this section, we propose an algorithm to implement a discovery technique, see
Algorithm 1. This technique builds on the formalization introduced previously.
The goal is to create understandable process models that provide the user with
the required insights into the execution of the process. First, we describe the pre-
processing that needs to take place (Input for Algorithm 1). Then, we elaborate
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Observed PO PP VA τ Total

Warning 250 400 200 50 900
Held with force 20 50 50 10 130
Seclusion 30 50 20 10 110
Terminate contact 100 100 90 10 300
Distract client 100 150 40 10 310
Total 500 750 400 100 1750

Expected PO PP VA τ Total

Warning 257.1 385.7 205.7 51.4 900
Held with force 37.1 55.7 29.7 7.4 130
Seclusion 31.4 47.1 25.1 6.3 110
Terminate contact 85.7 128.6 68.6 17.1 300
Distract client 88.6 132.9 70.9 17.7 310
Total 500 750 400 100 1750

Legend : VA = Verbal Aggression, PP = Physical Aggression (People),
PO = Physical Aggression (Objects)

Table 3: Excerpt of the tables used to perform high-level statistical tests; hori-
zontal categories: effect, vertical categories: response

Observed PO PP VA τ Total

Terminate contact = 0 300 500 210 90 1100
Terminate contact = 1 100 100 90 10 300
Total 400 600 300 100 1400

Expected PO PP VA τ Total

Terminate contact = 0 314.3 471.4 235.7 78.6 1100
Terminate contact = 1 85.7 128.6 64.3 21.4 300
Total 400 600 300 100 1400

Legend : VA = Verbal Aggression, PP = Physical Aggression (People),
PO = Physical Aggression (Objects)

Table 4: Excerpt of the tables for an individual response used to perform statis-
tical tests; horizontal categories: effect

on the technique which consists of three main stages: (1) high-level statistics
(line 1-5 in Algorithm 1), (2) detailed statistics (line 5-9), and (3) identifying
influential points (line 9-14).

4.1 Pre-processing the Event Log

We first pre-process the log to obtain the effects of responses. As we are studying
the effect of a response to an action, the duration between a response and its
effect influences the likelihood of a dependency relation between the two. Let us
return to our example: if there is an aggressive incident, there is a given response
to this incident. However, if the next incident takes place after a long time (e.g.
a year) we doubt that this new incident is still dependent on the response to
the initial action. Thus, we defined the parameter epsilon (ε), see Section 3. ε
represents the maximum duration between two events in which the first event is
still considered to have an effect on the second event. For our specific example
we define ε equaling seven days in line with the input of an expert. Based on



8 J. J. Koorn et al.

Algorithm 1 Compute graph

Input: Event log L
Output: Graph G = (V,≺)
1: {STAGE 1: High-Level Statistics}
2: for a ∈ A do
3: Initiate matrix O[a]← freqa,R,C {see Equation 2, calculate the observed values}
4: Compute matrix E[a] {calculate the expected values by following the chi-square test, see

[9]}
5: Compute χ2

a =
(O[a]−E[a])2

E[a]
{To test the dependence between responses R and effects

A ∪ {τ}}
6: if χ2

a is significant then
7: {O[a] differs from E[a], thus responses R have a statistically significant influence on

the effects C}
8: {STAGE 2: Detailed Statistics}
9: for response r ∈ R do
10: Compute matrix O[a]r, E[a]r, and χ2

a,r

11: if χ2
a,r is significant then

12: {STAGE 3: Influential Points}
13: Compute adjusted standardized residuals ASRc {see Sec. 4.4}
14: for effect c ∈ A ∪ {τ} do
15: if ASRc is significant then
16: {draw the arc from r to c}
17: V ← V ∪ {as} ∪ {r}, ≺←≺ ∪{(as, r)} ∪ {(r, c)}
18: end if
19: end for {effect}
20: else
21: {χ2

a,r is insignificant, i.e., r has no significant influence on C. We do not draw

node r or any arc from r to C}
22: end if
23: end for {response}
24: else
25: {Observed O[a] follows the expected values E[a], thus response R has no statistically

significant influence on the effects C; thus, no arcs are drawn}
26: end if
27: end for {action}
28: return G

the ε, we introduce state τ . It represents the state we reach if there is no next
incident within the defined duration of ε. In Table 2 we can see, for example,
that distracting the client seems to be related to τ .

4.2 Computing High-Level Statistics

After pre-processing the event log, we investigate for each action the significant
relation between the responses and the effects. In our example, the client shows
a certain type of aggressive behavior (the action). Given this, we are interested
in how the response of a caretaker to that incident has an effect on the follow-up
incident. Hence, we will explain the technique with a fixed initial action.

In Table 3, an example of the observed and calculated expected frequencies
can be found given the action is physical aggression against objects (see line 2
& 3 in Algorithm 1). This allows us to perform a Pearson Chi-square test [9]
(see line 4). Based on a confidence level α (usually 95%), the calculated χ2 is
compared to the Chi-square distribution to see if there is at least one pair of
response-effect significantly different. If the chi-square score is insignificant, the
action is excluded from the graphical representation (see line 22). If the Chi-
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square is significant (see line 5), this indicates that the effects may depend on
the response. We then move to the second stage, see Sec. 4.3.

We demonstrate this first stage by applying it to a designed example based on
our case study presented in Table 3. Based on the observed values, we can calcu-
late the expected values in the table, for example, the expected value for the first
cell: response Terminate Contact and effect VA = Nr×Nc

E[a][r][c] = 300×400
1750 = 68.6. We

know from Table 3 that there are five response classes and four effect classes, so
the degrees of freedom: c = (5−1)×(4−1) = 12. Given all this, we can calculate

the Chi-square score for the overall table: χ2
c =

∑5
i=1

(OWarning,PO−EWarning,PO)2

EWarning,PO
+

....+
(ODistract client,τ−EDistract client,τ )2

EDistract client,τ
χ2

12 = (250−257.1)2

257.1 + ...+ (10−17.7)2

17.7 = 63.47.

Now we need to determine if this score is significantly different from the mean
of the Chi-distribution [14]. The formula for calculating the p-value is complex
and will thus not be discussed in detail in this paper. For more details we refer
to [14]. In our case the p-value (< 0.001) corresponding to our Chi-square score
is significant. This shows that for at least one pair of response-effect given ac-
tion PO there is a significant difference from the expected frequency. Thus, we
perform a Chi-square test for each individual response.

4.3 Computing Detailed Statistics

In the second stage of the algorithm, we perform the Chi-square test again on
each response class to determine for which response we need to perform post-
hoc statistical tests (see line 6 - 8 in Algorithm 1). For this purpose we create
dummy variables. A dummy variable is made for each individual response, which
takes the value of 0 or 1. The new table we create is a 2 x 4 table where the
rows represent the response either taking a 0 or 1 value, see Table 4. Note
that the degrees of freedom changes to three now. The same formulas are used
to calculate the individual response Chi-square score and the corresponding p-
value. A Bonferroni correction [16] is made to correct the critical value for the fact
that on the same table multiple sets of analyses are performed. The Chi-square
test identifies for which responses there is at least one effect that is significantly
different from the expected frequency. If the Chi-square score is significant, we
create a node for the response and perform post-hoc tests to identify the exact
pairs of response-effect that are significant (see line 9).

We will demonstrate this stage on our designed example. We test five times
(one for each response). Thus, we apply the Bonferroni correction [16] on con-
fidence level of 95% (meaning α = 0.05): 0.05

5 = 0.01. If we take Table 4, we
can use the same formulas as presented in the previous section to calculate the
expected values. Note that we assume independence of responses. Thus, if there
are two responses, the action is counted twice: once for response 1 and once for
response 2. Therefore, the observed frequencies in Table 3 are not necessarily
equal to those in Table 4. If we perform the Chi-square test for the response
terminate contact we get a Chi-square score of 31.96 with a p-value < 0.001.
Thus, for the response terminate contract there is at least one effect that is sig-
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nificantly different from the expected frequency. A post-hoc test will identify the
exact pairs for which this is true.

4.4 Identifying Influential Points

In the last stage, the post-hoc tests are performed to test which exact pairs of
response-effect have a significant contribution to the Chi-square test score. For
this, the adjusted standardized residuals (ASR) [3] are calculated (see line 10 in
Algorithm 1). They represent a normalization of the residuals (observed - ex-
pected frequency). As the residuals can take either a positive or negative value
we use two-sided testing. In order to improve the interpretability, we trans-
form the α level into a critical value. We refer to [14] for details on this. If
|ASR| > criticalscore the difference between observed and expected frequency
is significant. A significant score means that a specific pair of response-effect has
a significant impact on the overall test score. We will refer to these as influential
points. If the score is insignificant, no arc is drawn for that pair of response-effect

For each influential point, arcs are drawn in the graphical representation (see
line 11-14). We first draw an arc from the action to the responses. On this arc, we
indicate the observed frequency of the behavior. Then, we draw an arc from the
response to the effect(s) for which we found a significant relation. On the arc we
display the observed frequency followed by the expected frequency in brackets.
If the observed frequency is larger than the expected frequency, i.e. the response
leads to an increase in frequency of effect, we draw a thick arc. Correspondingly,
if the observed frequency is lower than the expected frequency we draw a thin
arc. The total number of graphical representations created equals the number of
actions for which a significant Chi-square score is found (see line 25).

Now, we turn to the designed example. From the previous section we know
that the response Terminate contract results in a significant Chi-square score. To
calculate which points are influential points we calculate the adjusted standard-
ized residuals for each pair. To exemplify, we show the calculation of the ASR for
the pair Terminate contact = 1 and VA: ASR = 90−64.3√

64.3∗(1− 64.3
300 )∗(1− 64.3

300 )
= 4.08

Given our Bonferroni correction gave us an alpha of 0.01 (see previous section),
we need to test on the 99 % confidence level. The critical absolute value for this
is 2.57. Thus, if our ASR value is > |2.57| we mark it as influential point and
draw an arc in the graphical representation. In the example of the pair Termi-
nate contract = 1 and VA the ASR is larger than the critical score (4.08 > 2.57).
Therefore, we draw a thick arc in the graphical representation of this example.

After conducting the above-described calculations for all actions, responses,
and effects from the designed example, we obtain a total of three graphical rep-
resentations (one for each action). In the next section, we evaluate the technique
by applying it on a real-world data set.

5 Evaluation

The goal of this section is to demonstrate the capability of our technique to
discover models that allow to obtain meaningful insights into action-response-
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Fig. 2: Graphical representation of applying our technique on the action-
response-effect event log. The initial action is physical aggression against objects.

effect patterns. To this end, we implemented our technique in Python and applied
it to real-world data set. The scripts are publicly available for reproducibility4.

5.1 Data set

To evaluate our technique, we use a real-world data set related to the care process
of a Dutch residential care facility. The event log contains 21,706 recordings
of aggressive incidents spread over 1,115 clients. The process captured in this
log concerns the aggressive behavior of clients in their facilities and the way
client caretakers respond to these incidents. In the log we can find an aggressive
incident of the client, which fits in one of five action classes. This is followed
by some measures taken by the staff as response to this incident, which fits in
one of nine response classes. In line with the description of our technique, we
transformed this log into suitable triples by adding the next aggressive incident
of a client as the effect, given it took place within our ε. Thus, the effect can be
one of five classes. As there are four different classes of actions, our technique will
return four different graphical representations. Below, we present and discuss the
results for one class of action: physical aggression against objects.

5.2 Results

Healthcare Case Results. After applying our technique to the data set, we
obtain four graphs (one for each class of action). In Figure 2 we show the resulting
graph when the initial action is physical aggression against objects (“po s” in the
figure). What we can see in the graph is the observed frequencies of the responses.
For example, terminate contact has been observed 299 times in our data as a
response to physical aggression against objects. Following this, the graph shows
that in 43 events the effect to this response class is verbal aggression. From the
data we know that, in total, there are four action classes, nine response classes,

4 Source code and results: github.com/xxlu/ActionEffectDiscovery.

https://github.com/xxlu/ActionEffectDiscovery
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Fig. 3: Directly-follows process model of the real-world event log for the initial
action physical aggression against objects. This shows the process filtered on 5%
of the possible activities and paths. The model is created with Disco 5.

and five effect classes. As such, the representation for one action could potentially
contain 81 (9 ∗ 4 + 9 ∗ 5) arcs. In our graphical representation, we do not draw
all these arcs, we only draw seven of them.

Each arc represents a significantly higher (thick arc) or lower (thin arc)
amount of observed compared to expected frequencies of interactions between
the response and effect. As can be seen in the graph, this reduces the number of
arcs substantially such that the impact of each individual response to a physical
aggression against objects event can be studied.

Focusing on the insights we can obtain from the graphical representation
in Figure 2. The figure shows that responding to a physical aggression against
objects event with seclusion results in a significantly higher amount of physical
aggression against people (“pp” in the figure). This can be seen by the thicker
arc or by comparing the observed frequency (42) with the expected frequency
(25). Studying the frequencies we can conclude that we observe that the re-
sponse seclusion is almost 1.7 times as likely to have the effect equaling physical
aggression against people compared to what is expected. In similar fashion, the
response terminate contract and distract client lead to a higher likelihood of
one class of effect. However, the response seclusion leads to a significantly lower
likelihood of the effect being no next aggression incident (τ).

Comparison to Control-Flow Based Discovery. Figure 3 illustrates that
a control-flow based discovery approach, such as the directly-follows approach,
cannot provide such insights in the context of action-response-effect logs. The
process model contains a large number of arcs. The number of arcs here increase
exponentially with the number of responses observed. A possible solution to this
could be to add information to the control-flow based representation, such as
the observed frequencies of the arcs or nodes. However, filtering based on the
frequencies does not always have the desired result. This can also be seen in
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Figure 3. It could even be misleading since the data set is imbalanced. In this
real-world scenario, a high frequency does not imply a significant pattern. This
becomes obvious if we compare the approaches. From the figures we can see
that none of the significant response-effect pairs from Figure 2 are displayed in
Figure 3. In order to understand the relations in the representation, we have to
account for the relative frequencies. These reveal the meaningful insights that
are hidden in the representation of a discovery technique such as the control-flow.
Hence, even after applying filtering mechanisms, Figure 3 does not provide the
insights that are required to answer a question such as: If a client displays ag-
gressive behavior of class X, which response is likely to lead to an (de-)escalation
or future aggression?

5.3 Discussion

Insights. The key question identified at the start of this research addressed
the desire to express insights into how a response to an action can lead to a
desired or undesired outcome (effect). In our problem statement we identified
two main challenges associated with this that need to be overcome: (1) graphical
representation, and (2) effective filtering mechanism. Studying the example of
aggressive behavior highlights how the proposed technique addresses both these
challenges. Figure 2 shows that our technique creates simple graphical represen-
tation that allow for insights into dependency relations that cannot be obtained
using Figure 3. In addition, comparing the same figures we can see that the use
of statistics reduces the number of arcs substantially. The filtering mechanisms
is effective in the sense that it filters those arcs that are meaningful, opposed to
those that are merely frequent.

As a result in Figure 2 we can see the effects of responses to aggressive
incidents. Important to note is that physical aggression against people is seen as
the most and verbal aggression as the least severe form of aggressive behavior.
The figure shows that responding to a physical aggression against objects event
with seclusion increases the likelihood of the next event being physical aggression
against people. In other words, this response leads to an undesired outcome:
escalation of the aggressive behavior of the client. In contrast, we observe that the
response terminate contact is more likely to lead to a verbal aggressive incident.
Thus, this represents a desired outcome: de-escalation of future violence. Finally,
the response distract client has the effect that the client is more likely to repeat
the same class of action (“po” in the figure), indicating a circular relation.

Implications. One interesting implication of our technique is that the gener-
ated insights can be used to support decision making processes. In our example,
Figure 2 can be used to train existing and new staff members to ensure that
appropriate responses are taken. Placing this technique in a broader medical
context, the technique could help make informed decisions when different treat-
ment options are considered. In a different domain, the technique could help
a marketing organization understand the effectiveness of marketing strategies
in terms of response of potential customers. In short, the discovery technique
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provides insights into action-response-effect patterns where the objective of an-
alyzing the process is to understand possible underlying dependency patterns.

Limitations. It is worth mentioning that, in our technique, we assume the
independence of the responses. This means that each response has a unique effect
on the effect and there is no interfering effect when responses are combined. For
example, if response r1 is more likely to lead to c1 and r2 to c2, then performing
r1 and r2 are more likely to lead to follow-up effects c1 or c2, but not a different
effect c3. Statistical pre-tests can be performed to verify this assumption. A basic
approach is to create a correlation matrix for the dummies of the responses. In
our example, this matrix shows that the assumption holds. In other words, no
responses are strongly and significantly correlated. If the assumption is violated
then the technique should consider R′ as input. R′ is a set of all independent
classes including those groups of responses that have a potential interfering effect.

6 Related Work

Over the last two decades a plethora of process discovery algorithms were pro-
posed [5]. The majority of these approaches generate procedural models such
as Petri nets [25,26], causal nets [20,28], BPMN models [4,7] or process trees
[8,17]. Some approaches also discover declarative models [6,24] or hybrid models
(i.e. a combination of procedural and declarative models) [10,19]. What all these
techniques have in common is that they aim to discover the control flow of a
business process, that is, the execution constraints among the process activities.
Our approach clearly differs from these traditional process discovery approaches
by focusing on action-response patterns instead of the general control flow.

There are, however, also alternative approaches to process discovery. Most
prominently, several authors addressed the problem of artifact-centric process
discovery [18,21,22]. The core idea of artifact-centric process discovery is to con-
sider a process as a set of interacting artifacts that evolve throughout process
execution. The goal of artifact-centric discovery, therefore, is to discover the
lifecyles associated with these artifacts and the respective interactions among
them. While artifact-centric discovery techniques move away from solely consid-
ering the control-flow of the process’ activities, the main goal is still control-flow
oriented. A related, yet different approach to process discovery was proposed
in [12,13]. This approach focuses on the different perspectives of a process and
discovers and captures how their relations using Composite State Machines.

While the technique from [12,13] is potentially useful in many scenarios we
address with our technique, the insights that can be obtained with our technique
differ substantially. The technique from [12,13] allows to understand how differ-
ent artifact lifecycle states are related. For example, it reveals that a patient in
the state “healthy” does no longer require a “lab test”. The goal of our technique
is to show what actually needs to be done (or should not be done) to make sure a
patient ends up in the state “healthy”. To the best of our knowledge, we are the
first to propose a technique that discovers such action-response-effect patterns
and allows the reader to develop an understanding of why certain events occur.
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7 Conclusion

This paper presented a technique to discover action-response-effect patterns.
We identified two main challenges that we addressed in this research: (1) graph-
ical representation, and (2) effective filtering mechanism. In order to address
these challenges, we proposed a novel discovery technique that builds on filter-
ing influential relations using statistical tests. We evaluated our technique on a
real-world data set from the healthcare domain. More specifically, we used our
technique to study aggressive behavior and show that we can gain valuable and
novel insights from the representations discovered by our technique. The repre-
sentations also show that the technique can tackle both challenges by providing
an easy-to-interpret representation that only displays meaningful relations.

In future work, we plan to further test the approach on real-world cases.
In addition, we plan to extend this work in two ways: (1) by introducing more
complex statistical tests to provide flexibility in the assumption of independence
of the responses, and (2) by introducing statistical tests to approximate the
optimal configuration of ε.
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