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Abstract. Despite the widespread availability of process modeling tools, the first
version of a process model is often drawn by hand on a piece of paper or white-
board, especially when several people are involved in its elicitation. Though this
has been found to be beneficial for the modeling task itself, it also creates the
need to manually convert hand-drawn models afterward, such that they can be
further used in a modeling tool. This manual transformation is associated with
considerable time and effort and, furthermore, creates undesirable friction in the
modeling workflow. In this paper, we alleviate this problem by presenting a tech-
nique that can automatically recognize and convert a sketch process model into a
digital BPMN model. A key driver and contribution of our work is the creation
of a publicly available dataset consisting of 502 manually annotated, hand-drawn
BPMN models, covering 25 different BPMN elements. Based on this data set,
we have established a neural network-based recognition technique that can reli-
ably recognize and transform hand-drawn BPMN models. Our evaluation shows
that our technique considerably outperforms available baselines and, therefore,
provides a valuable basis to smoothen the modeling process.
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1 Introduction

In many organizations, business process modeling has become an integral activity to
document and analyze business processes, as well as to collect requirements in soft-
ware development projects [1, 2]. This importance has led to the availability of a large
number of specialized process modeling tools, which support modelers while creating,
checking, and maintaining business process models and even entire collections thereof.
Although these tools can generally be considered indispensable, it is important to note
that the development of most process models does not start with software. For exam-
ple, pen and paper is a suitable approach for an initial sketch [12, p.85]. In collaborative
settings, process models are typically drawn on whiteboard or brown paper, which stim-
ulates the engagement of process stakeholders [9, 12].
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However, starting with a hand-drawn model also introduces the need to subse-
quently convert it into a digital counterpart using a modeling tool [4]. Since this task
currently needs to be performed manually, this transformation step is associated with
considerable time and effort and, furthermore, creates undesirable interruptions and
friction in the modeling process. Some existing methods for collaborative modeling
have tried to circumvent this transformation problem by providing tool support for col-
laborative modeling [3, 7]. Nonetheless, these tools do not allow users to freely sketch
processes, but require them to stick to predefined constructs and functionality, which
actually mitigates the benefits associated with the use of hand-drawn models.

Therefore, recognizing the importance and benefits of hand-drawn process models,
as well as the effort involved in their manual transformation, we use this paper to pro-
pose an approach that automates this step by transforming sketch process models into
digital BPMN models. By expanding state-of-the-art work from the area of diagram
recognition [20], our neural network-based approach, Sketch2BPMN, takes a hand-
drawn BPMN (Business Process Model and Notation) model as input and produces a
respective BPMN XML file, suitable for process modeling tools. Aside from this, a core
contribution of our work is the introduction of the publicly available hdBPMN dataset,
consisting of 502 manually annotated, hand-drawn BPMN models, covering 25 kinds
of BPMN elements and varying considerably in their characteristics. Our experiments
conducted on this dataset demonstrate the high accuracy achieved by our approach.

In the remainder, Section 2 illustrates the challenges that come with the recognition
of hand-drawn BPMN models. Section 3 describes the Sketch2BPMN approach. Sec-
tion 4 introduces our hdBPMN dataset and Section 5 the evaluation in which it is used.
Finally, Section 6 reflects on related work before Section 7 concludes the paper.

2 Problem Illustration

To motivate the importance of our work, we illustrate the challenges associated with
the automated recognition of hand-drawn process models using a real-world example
from our hdBPMN dataset. Fig. 1 depicts a BPMN model concerned with a claims-
handling process. Although the depicted model is syntactically sound and correct, the
figure illustrates several challenges that must be overcome by an automated recognition
approach. Issue (1) shows that model elements may be drawn incompletely, such as the
Costumer (sic) pool. Issue (2) points to one of the many instances where an edge is not
properly connected to its source and/or target shapes. Other issues relate to overlaps
between model components, such as text that interrupts a line (3) or lines that cross
each other (4). We also observe remains of corrected mistakes, i.e., crossed out parts
(5) and the use of curved rather than straight lines (6).

Aside from the drawing itself, additional difficulties can be attributed to the paper
that has been used and the way it was digitized. First, the use of grid paper adds numer-
ous additional lines to the image that may obscure the distinction between lines of the
paper and those drawn as part of a model element (e.g., a resource pool or lane). Second,
the fact that the image has been captured with a camera instead of a scanner introduces
additional quality issues, such as curved paper, blur, and perspective distortion.
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Fig. 1: Example of a hand-drawn BPMN model with highlighted issues

In summary, these issues make it harder for an automated approach to properly
interpret a hand-drawn BPMN model. Although the above only relates to a single ex-
ample, the spectrum of hand-drawn BPMN models is even more complex, due to the
combination of various drawing styles, paper types, pens, and digitization methods. As
a result, the dataset we introduce in this paper contains a remarkably high degree of
diversity, which a successful BPMN-recognition approach must be able to deal with.

3 Approach

This section introduces Sketch2BPMN, our automated approach for recognizing a
hand-drawn BPMN model from an image. As visualized in Fig. 2, Sketch2BPMN
consists of three main steps: 1) shape and edge detection, 2) BPMN structure recogni-
tion, and 3) output generation. Below we introduce each step in detail.

3.1 Shape and Edge Detection

This step of our approach generates sets of candidate BPMN shapes SC and edges EC

for a provided hand-drawn image. Each candidate shape s ∈ SC is formalized as a

Fig. 2: Sketch2BPMN: overview of the main steps
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tuple s = (b, c, l), where b refers to the coordinates of a bounding box, i.e., a rectangle
encompassing the predicted area of a drawn element, c the predicted BPMN element
category, and l the likelihood that the shape s corresponds to category c. Furthermore,
each candidate edge e ∈ EC is a tuple e = (b, c, l, src, tgt), where b, c, and l are the
respective shape counterparts, and src and tgt correspond to the keypoint coordinates of
the edge, reflecting the points at which e is predicted to connect to shapes in SC . Fig. 3
visualizes such predicted candidates for the running example, showing, for example,
that the upper bounding box is determined to have a 99.2% likelihood of being a pool.

To predict SC and EC , we build on Arrow R-CNN [20], an approach we established
in earlier work for the recognition of hand-drawn diagrams, and adapt it to the specific
characteristics of hand-drawn BPMN models. Particularly, we expand upon existing
work through improved keypoint detection and extended data augmentation.

Arrow R-CNN. Arrow R-CNN [20] is a method we previously defined to recognize
flowcharts. At its core, Arrow R-CNN builds on Faster R-CNN [19], a popular deep
neural network approach for object detection. Arrow R-CNN detects objects in an im-
age through the aforementioned bounding boxes, depicted in Fig. 3. For each bounding
box, Arrow R-CNN assigns a predicted class (from a set of predefined classes) and a
likelihood between 0 and 1. While such bounding-box detection is suitable for shapes,
the proper detection of edges is more complex. Specifically, standard object detection,
such as provided by Faster R-CNN, cannot be used to identify the source and target
shapes of an edge. Therefore, Arrow R-CNN extends Faster R-CNN with an arrow key-
point detection network that predicts the arrowhead and tail of an edge. This means
that for edges, Arrow R-CNN provides a (predicted) start and end point along with the
bounding box. During training, the keypoint detector loss is averaged over a sample of
edges and then integrated into the joint Faster R-CNN loss term. This allows Arrow
R-CNN to train all components simultaneously, and it also reduces the risk of overfit-
ting on small datasets, which makes Arrow R-CNN especially suited for small datasets.
Given its general applicability for the recognition of arrow-connected diagrams, we

Fig. 3: Step 1: Candidate shapes and edges have been classified and localized through
bounding boxes, in addition edges have predicted arrow head (.) and tail (◦) keypoints.



Sketch2BPMN: Automatic Recognition of Hand-drawn BPMN Models 5

train Arrow R-CNN on the 21 different BPMN shape and three edge classes we con-
sider in this work. However, we do this while also incorporating the following two key
adaptations that support improved identification of BPMN models in our scenario.

Improved keypoint detection. A key challenge when dealing with hand-drawn BPMN
models is the correct recognition of edges that are not properly connected to their re-
spective source and target shapes (see issue 2 in Fig. 1). To account for this issue, we
adapt the manner in which edge keypoints are encoded and predicted.

Fig. 4: Improved keypoint detec-
tion due to annotating edge inter-
section (blue .) instead of drawn
arrow head (green .).

For this, we first change the way edges are anno-
tated in the training data. In particular, instead of
using the drawn tail and head of the edge, we an-
notate the points where the edge intersects with its
source and target, as illustrated in Fig. 4. Then, the
Arrow R-CNN model trained on these annotations
will strive to predict where an edge should have
ended (or started) if it had been drawn properly,
rather than predicting the point where the edge
ends (or starts) in the drawing. While this adapted
method requires the keypoint predictor to perform
reasoning beyond the recognition of a drawn arrowhead, this additional burden on the
prediction model improves the accuracy of our approach. In particular, since this im-
proved method considers the direction of a drawn edge when making predictions, it
enables the approach to even properly recognize a shape to which an edge should con-
nect, even when it is not the shape that is closest to the end of a drawn edge. For the
example in Fig. 4, our approach then correctly recognizes that the edge should connect
to the 48 hours event, rather than the cancel order activity, despite the latter shape being
closer to the drawn arrowhead.

Extended data augmentation. Aside from BPMN specifics, we also have to account
for a second particularity of the hdBPMN dataset, namely its diversity in terms of the
means used to create and digitize the hand-drawn models, such as the type of paper and
drawing implement (see also Section 4.3). Since Arrow R-CNN was designed to deal
with much more uniform input (e.g., black drawing on white background), we need to
adapt the training approach to the more difficult characteristics of our setting. To do
this, we develop an image augmentation pipeline tailored to camera-based hand-drawn
diagrams with varying backgrounds. Such augmentations have become a common reg-
ularization technique to combat overfitting in deep learning models for various image
recognition scenarios [8]. They have been shown to be particularly valuable when train-
ing an approach on a dataset with only a few hundred images [20], such as in our case.
Therefore, we add augmentation methods to simulate the varying properties of camera-
based documents. Specifically, we randomly add gaussian noise, change the brightness
and contrast of the image, and shift the hue, saturation, and value (HSV) color scale.

3.2 BPMN Structure Recognition

In the structure recognition step, Sketch2BPMN turns the sets of candidates SC and
EC into filtered sets S ⊆ SC and E ⊆ EC . In addition, each edge e ∈ E is extended
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to a tuple e′ = (b, c, l, src, tgt, ssrc, stgt), where ssrc specifies the source shape that e
connects, and stgt the target shape. The resulting BPMN model obtained over S and
E is connected and resembles the drawn model as closely as possible. We achieve this
through shape disambiguation and edge post-processing.

Shape disambiguation. To turn a set of candidate shapes SC into a set of predicted
shapes S, we primarily need to disambiguate cases in which multiple candidates in SC

relate to the same drawn shape, i.e., duplicate detection and resolution. Although Faster
R-CNN inherently resolves these issues for bounding boxes with the same predicted
category, this is not the case when it comes to boxes with different categories. As a
result, it may generate two candidate shapes, with different classes, for the same object
in an image, as shown in Fig. 5 for two categories of timer events.

Fig. 5: Duplicate shape
candidates

However, determining that two candidates s1, s2 ∈ SC

truly relate to the same drawn object is not trivial, especially
in the context of BPMN models, whose hierarchical structure
naturally leads to overlap between resource shapes (i.e., pools
and lanes) and other shapes, such as activities and events.
Therefore, we employ so-called non-maximum suppression
(NMS) over all shape categories. NMS first determines if the
bounding boxes of s1 and s2 have an overlap of at least 80%.
We quantify this as the Intersection over Union (IoU), i.e.,
the ratio between the intersection area and the union area of
s1.b and s2.b. If this ratio exceeds 80%, NMS suppresses the shape with the lower
classification score, i.e., it keeps the candidate that is predicted to be most suitable. In
the case of Fig. 5, the two candidates clearly have such significant overlap, which is
why after employing NMS, we retain the blue shape corresponding to the more likely
timerStartEvent, while omitting the other candidate from S.

Edge post-processing. To finalize the set of edges E to be included in a BPMN model
we use a two-stage approach. First, we associate each edge candidate e ∈ EC with a
source ssrc ∈ S and a target stgt ∈ S, which are the shapes that are closest to the
edge’s predicted keypoints, e.src and e.tgt, and also correspond to a valid category
with respect to the given edge. For instance, if e.c = sequenceFlow, edge e will only be
connected to shapes that are predicted to be activities, events, or gateways. To determine
the closest shape, we compute the minimum Euclidean distance between a keypoint and
all sides of a shape’s bounding box. After identifying the closest, valid shapes, we turn
a candidate edge e ∈ EC into a connected edge e′ = (b, t, l, src, tgt, ssrc, stgt).

Once each edge candidate is connected to source and target shapes, we omit all con-
nected edges that correspond to highly unlikely or invalid constructs, such as self-loops
(e.ssrc = e.stgt) and invalid data associations (neither e.ssrc nor e.stgt is a data store
or pool). Finally, we also apply the same approach employed for shape disambiguation
to detect and remove duplicate edge candidates.

Note that it is important to consider that this post-processing phase is intended to
omit faulty predictions from our generated BPMN model, rather than to correct syntac-
tic mistakes from the hand-drawn image. As such, the employed post-processing rules
do not reflect cases that are observed in our training data, but represent a design choice
to improve the output of our approach. Fig. 6 depicts the outcome of this step for the
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Fig. 6: Recognized BPMN Model: the recognized BPMN model has been converted to
an image and overlaid over the hand-drawn sketch. The entire process from the input
image to the final BPMN model is automated.

running example, highlighting that each drawn shape is associated with a single pre-
dicted shape in S and that each edge in E properly connects a valid source and target.

3.3 Output generation

The last step in our approach takes the final shapes and edges after structure recognition
to create a BPMN process model in the BPMN 2.0 XML format. The XML consists of
two main schemata: the actual process model and the BPMN DI schema, which defines
the shape bounding boxes and the waypoints of edges.

Given the output from the previous step, the creation of the XML format is mostly
trivial. For each predicted shape s ∈ S, we create a respective element in the XML
file. When creating a BPMN DI edge element for each e ∈ E, we follow the typical
convention and define the first and last waypoint as the points that intersect with the
edge’s source (e.ssrc) and target (e.stgt) shapes, respectively. To that end, we shift
each predicted keypoint (i.e., e.src and e.tgt) to the nearest point on the bounding box
boundary of the connecting shapes, except for gateways, where we shift the keypoint to
the closest of the four diamond corner points.

4 Dataset

This section discusses the collection, annotation, characteristics, and splits of hdBPMN,
the dataset we established for our work. The original and annotated images are publicly
available at: https://github.com/dwslab/hdBPMN.

4.1 Collection Procedure

We collected 502 images of hand-drawn BPMN models from 107 participants, all stu-
dents at the University of Mannheim. Each image corresponds to a solution that was

https://github.com/dwslab/hdBPMN
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Fig. 7: Example of an annotated hand-drawn model in the BPMN image annotator.
Shapes are sized and positioned to match their hand-drawn counterparts, while edges
are modeled using waypoints to resemble the handwritten arrows as much as possible.

submitted by a student for a graded assignment in an exercise sheet or exam. The ob-
tained models stem from 10 modeling tasks, 9 of which involved the establishment of
a BPMN model on the basis of a textual process description, while the other involved
the conversion of a Petri net into a BPMN model. Students were asked to hand-draw
their models on paper and afterwards embed the scan or photo of their drawing in the
submitted exercise sheet or exam PDF, with the only constraint that that the models
should be readable.5

For each received submission, we used the pdfimages command-line utility to
extract the images from the PDFs. We split images manually into multiples ones when
they spanned different modeling tasks. Note that we deliberately did not further crop im-
ages, occasionally resulting in the inclusion of background objects. Finally, we used im-
age editing software to conceal any personal details (e.g., names and student IDs). The
resulting images were assigned filenames that follow a taskID_participantID
convention, allowing one to identify images contributed by the same participant.

4.2 Annotation

To train and evaluate our BPMN recognition approach, we annotated the hand-drawn
shapes and edges in each image. To this end, we developed a BPMN image annota-
tion tool based on the open-source bpmn-js6 BPMN viewer and editor, which we
have made publicly available.7 Fig. 7 depicts the annotation tool in action. Note that in
order to allow us to also annotate images that contain modeling errors, we allow our

5 See also the public repository for the modeling tasks and provided instructions.
6 https://github.com/bpmn-io/bpmn-js
7 https://github.com/dwslab/bpmn-image-annotator

https://github.com/bpmn-io/bpmn-js
https://github.com/dwslab/bpmn-image-annotator


Sketch2BPMN: Automatic Recognition of Hand-drawn BPMN Models 9

annotation tool to violate certain correctness rules enforced by bpmn-js, e.g., an end
event with an outgoing sequence flow. Upon completion, the annotation is exported as a
BPMN 2.0 XML file. Since the image resolution during annotation is exported as a com-
ment into this file, the location and size of each shape and edge in the BPMN model
can be linked back to the location and size in the image.

4.3 Dataset Characteristics

The 502 annotated images contain more than 20,000 annotated elements. As shown in
Table 1, the models in the dataset are highly expressive, spanning 25 types of BPMN
elements, including 4 types of activity shapes, 9 types of events, 4 types of gateways,
and 4 types of edges. Largely owing to the different modeling tasks from which they
stem, the individual BPMN models differ in terms of their size, complexity, and ex-
pressiveness (i.e, number of types covered). The models resulting from the ten different
modeling tasks have up to 15 activities and 13 events, and between 0 and 8 gateways, 0
and 8 resources, and 0 and 11 data elements. Some tasks result in simpler models (e.g.,
task1: 11.0 shapes and 11.9 edges on average) and others in more complex ones (e.g.,
task3: 26.7 shapes and 28.2 edges). Note that the running example depicted in, e.g.,
Fig. 1, represents a task of intermediate complexity.

Table 1: BPMN elements included in the 502 annotated images
Type Group Elements and their frequencies

Shape

Activities task (2,906), subprocess (collapsed) (88), subprocess (expanded) (4),
call activity (10)

Events start (373), intermediate throw (16), end (587), message start (248),
message intermediate catch (220), message intermediate throw (139),
message end (52), timer start (71), timer intermediate catch (72)

Gateways exclusive (822), parallel (651) inclusive (1), event-based (67)
Resources pool (657), lane (523)
Data elements data object (707), data store (141)

Edge
Flow elements sequence flow (6,456), message flow (852), data association (1,395)

annotation association (65)

Text
Annotations text annotation (69)
Element labels label (2,971)

Aside from the complexity of a particular process, the recognition difficulty of individ-
ual images is affected by various other aspects:

– Paper type. The type of paper on which a model is drawn influences the amount
of noise that is present in an image, since, e.g., lined or squared paper introduces
additional lines that may be hard to distinguish from model-related content in an
image. The vast majority of images in our dataset is drawn on squared (about 330)
and blank paper (about 140), whereas the remaining used lined or dotted paper.

– Drawing implement. The type of drawing implement employed affects the thick-
ness, clarity, and consistency of lines in a drawing. Our dataset primarily contains
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models drawn by pen (about 430), whereas the remainder were drawn using pen-
cils, fineliners, or a mixture (e.g., pencil to draw shapes and pen for text).

– Model quality issues. The hand-drawn models have various kinds and degrees of
quality issues, in line with those discussed in Section 2, such as models with in-
complete, crossing, and curved lines, or with crossed-out elements. Furthermore,
the models differ greatly in the spacing that is used between shapes, e.g., some
models are spacious, whereas others pack various shapes into a small area.

– Image capturing issues. Camera-based image capturing introduces a series of qual-
ity issues [11]. This includes images that are rotated or blurry, as well as those that
include content beyond the paper or actually cut part of it off (e.g., Fig. 1).

Overall, the 502 images in the publicly-available hdBPMN dataset thus depict BPMN
models that span a broad range of BPMN elements and have a high degree of diversity,
caused by variation in terms of the employed paper, drawing implement, and image
capturing method. Fig. 8 visualizes this diversity by showcasing some of the different
manners in which various kinds of shapes were drawn.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)

Fig. 8: Examples of hand-drawn events (start 8a, intermediate 8b, end 8c, message
start 8d, message intermediate catch 8e, message intermediate throw 8f, message
end 8g, timer start 8h, timer intermediate 8i), gateways (exclusive 8j, parallel 8k, event-
based 8l) and data elements (data object 8m, data store 8n).

4.4 Dataset Splits

Following related hand-drawn diagram datasets [6,14], we split up the dataset into pub-
licly available training, validation, and test parts. Each participant in the dataset con-
tributed between one and nine diagrams. While the variability of factors such as writ-
ing style, writing medium and image capturing method is high between participants,
there are substantial similarities between the diagrams of one participant. Therefore,
we split the dataset by participants, such that the participants in the training, valida-
tion, and test set are disjoint. Specifically, we created a random 60%/20%/20% split
over the participants, and assigned each diagram to the respective part. The resulting
training/validation/test set contain 308/102/92 diagrams from 65/21/21 participants, re-
spectively.
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5 Evaluation

To demonstrate the capability of our approach, we trained and optimized it using the
training and validation set of hdBPMN, and conducted an evaluation using its test set.
The evaluation results clearly demonstrate that our approach can reliably recognize
hand-drawn BPMN models from images and, hence, remove undesirable friction in the
modeling workflow.

5.1 Evaluation Setup

Below we elaborate on the details of our employed implementation, as well as the met-
rics, baselines, and configurations used to evaluate our approach.

Implementation. Our neural network implementation of the shape and edge recogni-
tion system Arrow R-CNN (Step 1 of our approach) is based on the Detectron2 [23]
object detection framework. To operationalize our extended augmentations, we use the
Albumentations library [8]. For training, we use stochastic gradient descent with a batch
size of 4 and a learning rate of 0.002. As the CNN backbone, we use ResNet-50 with
FPN. We keep the remaining configurations originally used to train Arrow R-CNN [20].

Metrics. To evaluate our approach, we compare the sets of shapes and edges extracted
by our approach to those in the manually annotated image (see Section 4.2), referred to
as the ground truth. To quantify the performance, we follow related work in diagram
recognition [5, 6, 22] and use different metrics to assess shape and edge recognition.

A detected shape is considered a true positive if it is assigned the correct class and its
bounding box overlaps sufficiently with its counterpart in the ground truth. Particularly,
following [22], we consider this overlap sufficient if the bounding boxes have an overlap
that exceeds an IoU threshold of 50%, which accounts for annotation inaccuracies in
the bounding boxes of the ground truth. To quantify shape-recognition performance, we
then use this notion of true positives to match the ground truth to the predicted shapes
and compute the standard precision, recall, and F1 scores.

For edge recognition, a true positive requires that, as for shapes, the predicted class
is correct and that its bounding box exceeds a 50% IoU threshold. However, we also
require that a detected edge is associated with the correct source and target shapes,
ssrc and stgt. This means that edge recognition is indirectly affected by the shape-
recognition quality: if a shape was not properly detected, all edges that connect to that
shape result in false positives as well.8

Baselines and configurations. To demonstrate the efficacy of our approach, we com-
pare its performance to two baselines: Baseline BL1 uses the Faster R-CNN object
detector with the standard image augmentations coming with Detectron2. Since a stan-
dard object detector cannot recognize edges and their keypoints, BL2 corresponds to
the original Arrow R-CNN system with its default image augmentation methods.

To highlight the relevance of its individual components, we evaluate two configura-
tions of our approach: Configuration C1 corresponds to the Arrow R-CNN system, en-
hanced with the extended augmentation (EA) of Section 3.1. Configuration C2 reflects

8 Note that an edge is still considered correct if its associated shapes are incorrectly classified.
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our full-fledged approach, including the proposed BPMN-specific processing compo-
nents. Note that we employ the same shape-disambiguation procedure (proposed in
Section 3.2) for all four systems, in order to ensure a fair comparison in terms of recall.

5.2 Results

This section presents the results of our evaluation for the hdBPMN test set, first in terms
of overall results, before taking a detailed look at the results per BPMN element class.

Overall Results. The overall results presented in Table 2 reveal that the two configu-
rations of Sketch2BPMN both outperform the baselines, achieving a micro F1 score
of 95.7 for shape recognition and 91.8 for edge recognition. Note that micro and macro
measures differ, because certain classes (e.g., Tasks) are much more common than oth-
ers (e.g., specific events). However, the overall trends are consistent across the two.

Table 2: Overall approach results
Shape Edge

Configuration Micro F1 Macro F1 Micro F1 Macro F1

BL1: Faster R-CNN [19] 92.7 77.5 — —
BL2: Arrow R-CNN [20] 93.2 80.8 85.5 76.0

C1: Arrow R-CNN + Extended Augm. (EA) 95.7 86.2 90.0 84.8
C2: Arrow R-CNN + EA + BPMN processing 95.7 86.2 91.8 87.4

Since each configuration in the table represents an extension of its predecessor,
a closer look at the results reveals that the desired improvements associated with the
gradual development from BL1 to C2 are achieved. In particular, we observe that Faster
R-CNN (BL1), a general-purpose object detector, already recognizes more than 90% of
all shapes, though it is unable to detect edges. The Arrow R-CNN approach (BL2), de-
signed for the recognition of hand-drawn flowcharts, improves these results, since it can
also detect edges, achieving a macro F1 of 76.0 for those, while also performing better
in terms of shape recognition (80.8 versus 77.5). From BL2 to C1, we observe the im-
provements achieved by our extended augmentation step, which makes the recognition
system more suitable to the diversity in the hdBPMN dataset, boosting the shape recog-
nition from 80.8 to 86.2 and edge recognition from 76.0 to 84.8. Finally, we observe
that the additional inclusion of BPMN-specific edge processing in C2 further improves
the ability to recognize edges, achieving a macro F1 of 87.4 and micro F1 of 91.8.

Shape recognition. Table 3 provides detailed insights into the performance of our ap-
proach (with configuration C2,) by depicting the results obtained per shape and edge
class. The table shows that our approach correctly recognizes the vast majority of shapes
for most of the classes, achieving an F1 score of at least 83.9 for the 13 classes that oc-
cur more than a dozen times. For other shape types, the number of data points is too
low (in both the training and the test set), to sufficiently cover the spectrum of factors
such as drawing styles and, therefore, to provide reliable evaluation results.

A post-hoc analysis of the results reveals that the most difficult task for our approach
is the correct classification of certain kinds of events. This comes as no surprise, though,
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Table 3: Shape and edge recognition results per class obtained for the test set
Group Class Precision Recall F1 Count

Activity

Task 96.7 99.6 98.2 560
Subprocess (collapsed) 100.0 72.2 83.9 18
Subprocess (expanded) n/a 0.0 n/a 2
Call Activity 100.0 100.0 100.0 1

Event

Start Event 92.3 95.2 93.8 63
End Event 94.5 96.3 95.4 107
Message Start Event 94.2 94.2 94.2 52
Message Intermediate Catch Event 90.9 93.0 92.0 43
Message Intermediate Throw Event 78.3 94.7 85.7 19
Message End Event 87.5 58.3 70.0 12
Timer Start Event 83.3 83.3 83.3 12
Timer Intermediate Event 90.0 75.0 81.8 12

Gateway

Exclusive Gateway 98.1 98.1 98.1 156
Parallel Gateway 93.7 97.5 95.6 122
Inclusive Gateway n/a 0.0 n/a 1
Event-based Gateway 90.0 81.8 85.7 11

Collaboration
Pool 95.3 96.8 96.0 125
Lane 94.7 93.0 93.9 100

Data element
Data Object 96.3 96.9 96.6 161
Data Store 95.5 84.0 89.4 25

Edges
Sequence Flow 95.7 94.0 94.9 1216
Message Flow 86.5 79.7 82.9 177
Data Association 92.3 77.2 84.1 311

Overall
Macro avg. 92.7 80.9 86.4 3307
Micro avg. 94.8 92.7 93.7 3307

the difference between some of the 8 kinds of events may only be due to marginal differ-
ences, such as a change in line thickness (start events), as well as different kinds of tiny
envelopes (message events) and clocks (timer events). Especially in light of diversity
of shapes in our dataset, as highlighted in Fig. 8, identifying such differences in hand-
drawn models can already be highly complex for humans, let alone for an automated
approach that lacks sufficient training examples for some of the rarer classes.
Edge recognition. The edge-levels results in Table 3 again demonstrate the overall
strong performance of our approach, as well as that sequence flows (F1 of 94.9) are
easier to recognize than message flows (82.9) and data associations (84.1). To some
extent, this can be attributed to the commonality of sequence flows and the fact that the
latter two classes use dashed rather than continuous lines. However, it is only highly
interesting to consider the different role of these edges from a process modeling per-
spective. Particularly, message flows connect (elements in) different pools, which are
often placed relatively far from each other. This results in longer edges, which may
also cross more nodes, and are, therefore, harder to analyze for an automated approach.
For example, we observe that the distance between the head and tail keypoint is more
than twice as high for message flows (499 pixels) as for sequence flows (216). For data
associations, it is important to consider that elements related to the data perspective
are often drawn last [12, p.177], whereas they also often are connected to a numerous
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shapes, scattered throughout a model. These two factors thus commonly result in data
associations that cross other edges or even shapes, which complicates their recognition.

6 Related Work

Our research mainly relates to the area of hand-drawn diagram recognition, which has
its roots in the graphics recognition area, where several techniques for flowchart [5, 16,
21, 22] and finite automata [6] recognition have been proposed. Most of these are so-
called online recognition techniques, which depend on data about the order and extent
of individual strokes, i.e., the drawing sequence. This means they can only be applied
to diagrams drawn on digital devices, like tablets. Offline recognition, which we target
in this paper, is more complex, because such sequence information is not available and
individual strokes cannot be reliably reconstructed from camera-based images of pen
and paper drawings. Outside graphics recognition, techniques for hand-drawn diagram
detection have been mainly adopted in the area of software engineering [10, 15]. More
recently, also the first recognition techniques for hand-drawn process models were pro-
posed [17, 24]. However, these techniques only target the recognition of shapes, which
means that they do not result in complete models.

Our research also relates to work on collaborative process modeling, which mainly
investigates and supports modeling efforts that involve several people. Works on the
former aspect typically use empirical methods to develop a better understanding of how
certain factors, such as collaborative tools or participant interaction, affect the modeling
outcome [13, 18]. Research on the latter aspect provides methods and tools to support
collaborative modeling efforts. These include works that enable collaborative process
modeling through design storyboards [3] and virtual worlds [7]. Our work also supports
collaborative process modeling, since it does not require modelers to follow a particular
procedure or use a specific tool to obtain an initial model. Instead, modelers can freely
draw a model, which our approach can then transform into a digital counterpart.

7 Conclusion

In this paper, we proposed Sketch2BPMN, a neural network-based approach for au-
tomatically recognizing hand-drawn BPMN models from images. Moreover, we in-
troduced hdBPMN, a publicly available dataset consisting of 502 manually annotated,
hand-drawn BPMN models, covering 25 different BPMN elements. By using hdBPMN
to train, validate, and test our approach, we demonstrated that Sketch2BPMN consid-
erably outperforms available baselines from the area of object and flowchart recognition
and, therefore, provides a valuable basis for the automated conversion of hand-drawn
BPMN diagrams. We would like to highlight that this paper conceptually targets the
recognition of BPMN shapes and edges and, hence, abstracts from recognizing the
handwritten textual labels in of BPMN models. However, this can be achieved using
off-the-shelf handwriting recognition solutions. In future work, we plan to further im-
prove the practical value of our approach by 1) matching the recognized handwritten
textual labels to the respective shapes and edges, and 2) by recognizing the intended
rather than the actually drawn model in order to directly fix certain drawing errors.



Sketch2BPMN: Automatic Recognition of Hand-drawn BPMN Models 15

References
1. Aagesen, G., Krogstie, J.: Analysis and design of business processes using BPMN. In: Hand-

book on Business Process Management 1, pp. 213–235. Springer (2010)
2. Allweyer, T.: BPMN 2.0: Introduction to the standard for business process modeling. BoD–

Books on Demand (2016)
3. Antunes, P., Simões, D., Carriço, L., Pino, J.A.: An end-user approach to business process

modeling. Journal of Network and Computer Applications 36(6), 1466–1479 (2013)
4. Bartelt, C., Vogel, M., Warnecke, T.: Collaborative creativity: From hand drawn sketches to

formal domain specific models and back again. In: MoRoCo@ ECSCW. pp. 25–32 (2013)
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