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Abstract

Process mining techniques are valuable to gain insights into and help improve (work) processes. Many of
these techniques focus on the sequential order in which activities are performed. Few of these techniques
consider the statistical relations within processes. In particular, existing techniques do not allow insights
into how responses to an event (action) result in desired or undesired outcomes (effects). We propose and
formalize the ARE miner, a novel technique that allows us to analyze and understand these action-response-
effect patterns. We take a statistical approach to uncover potential dependency relations in these patterns.
The goal of this research is to generate processes that are: 1) appropriately represented, and 2) effectively
filtered to show meaningful relations. We evaluate the ARE miner in two ways. First, we use an artificial
data set to demonstrate the effectiveness of the ARE miner compared to two traditional process-oriented
approaches. Second, we apply the ARE miner to a real-world data set from a Dutch healthcare institution.
We show that the ARE miner generates comprehensible representations that lead to informative insights
into statistical relations between actions, responses, and effects.

Keywords: process discovery, statistical process mining, effect measurement

1. Introduction

Process mining is a family of techniques that helps organizations to understand, analyze, and improve
their work process [1, 2]. The basis for process mining techniques and their analyses are so-called event logs.
These event logs are extracted from various information systems that are used within the organizations and,
therefore, provide valuable insights into how work processes are actually executed [3].5

Although the value of process mining has been demonstrated in various contexts, its application is still
associated with a number of challenges [2, 4]. Two key aspects concern the way the process mining results are
presented to the user. The representation of the results must be 1) easy to understand and 2) allow the user
to obtain the required insights into the process execution. In the past, various process discovery techniques
have been proposed for this purpose including the heuristic miner [5], the fuzzy miner [6], and the inductive10

miner [7]. These techniques, however, all approach process discovery from a control-flow perspective, i.e.,
they discover ordering constraints among events.

Depending on the context, the control-flow perspective is not sufficient for understanding all relevant
aspects of the process execution. Consider, for example, a care process in a residential care facility. In such
a facility, clients with mental and/or physical disabilities reside and the care staff supports these clients15

in their daily lives. The main goal of most processes in this facility is to ensure the well-being of clients.
To that end, the facility, among others, aims to minimize the aggressive behavior that is prevalent at the
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facility since it negatively impacts the well-being of the clients and the staff. Aggressive behavior can take
many forms. For example, clients can become verbally aggressive or physically attack other clients, staff,
or also themselves. When a client becomes aggressive, a staff member responds to the aggressive incident20

using one or multiple measures. These measures range from mild measures, such as verbal warnings, to
severe measures, such as seclusion. The care facility is particularly interested in uncovering which of these
measures lead to desired (i.e., de-escalation of aggressive behavior) or undesired (i.e., escalation of aggressive
behavior) outcomes.

To understand and analyze such a process, we need to identify action-response-effect patterns. In our25

care process example, the aggressive incident of the client represents an action, the measure taken by the staff
is a response, and the future behavior of the client is the effect. Existing process mining techniques cannot
identify such action-response-effect patterns since their discovery requires an analysis beyond the control-
flow perspective. If we were to apply existing discovery techniques to an event log from such a care process,
this would result in an unsatisfactory process representation for two reasons. First, the representation would30

be hard to read because it would contain too many connections. Second, the representation would not allow
the organization to obtain the insights they require because the resulting representation would not show the
effect of the behavior.

In light of these limitations of existing techniques, we propose a novel discovery technique in this work:
the ARE miner. For this technique, we take advantage of well-established statistical tests to analyze event35

logs. The goal of this analysis is to discover and visualize understandable graphical representations of work
processes. We achieve this by highlighting statistically significant and hiding the statistically insignificant
relations that we discover through the statistical tests. In order to investigate the effectiveness of the
technique, we evaluate it on an artificial data set and compare the results to a technique from the control
flow-perspective: the directly-follows graph. Furthermore, we demonstrate the applicability of the technique40

by conducting a case study in a Dutch residential care facility. We analyze a total of 21,384 aggression
incidents related to 1,115 clients. Combining the insights from these two evaluations, we show that the
ARE miner provides graphical representations that are 1) easy to understand, and 2) highlight informative
insights.

This work is an extension of our earlier work that was published in the proceedings of the 18th Inter-45

national Conference on Business Process Management [8]. We extended the original paper significantly in
various ways. There are six main differences: 1) improved graphical representation of arcs, 2) automated
determination of conceptual parameter epsilon, 3) introduction of a comprehensive quantitative evaluation,
4) extension of the qualitative evaluation, 5) revision of the related work, and 6) a thorough discussion of the
limitations. We improved the graphical representation by including the strength of the identified statistical50

relations in the representation. As a further refinement of our technique, we introduced an approach to au-
tomatically determine the parameter epsilon, which was formerly done manually by domain experts. Now we
included a data driven approach to increase the generalizability and applicability of our technique. Besides
these conceptual differences, we also extended the evaluation. We conducted a comprehensive quantitative
evaluation based on an artificial data set to demonstrate the performance of the ARE miner in a broad55

spectrum of contexts. Furthermore, we extended the qualitative evaluation in two ways. First, we included
and discussed all graphical representations from the case study to provide a more comprehensive view of the
results. Second, we increased the depth by discussing additional types of relations. We revised the related
work part by including a discussion on causal process mining techniques and by analyzing the differences
and overlaps between existing techniques and the ARE miner. Finally, we expanded the limitations by60

critically reflecting on both limitations of the ARE miner itself as well as its evaluation.
The rest of the paper is organized as follows. Section 2 describes and exemplifies the problem of discov-

ering action-response-effect patterns. Section 3 introduces the formal preliminaries for our work. Section 4
describes the ARE miner for discovering action-response-effect patterns. Section 5 presents the evaluation
of the ARE miner based on an artificial data set and a real-world event log. Section 6 elaborates on the in-65

sights, implications, and limitations of our work. Section 7 discusses related work before Section 8 concludes
the paper.
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EID CID Timestamp Action Response

1 1 12-05 09:53 VA Warning
2 1 13-05 13:35 PO Distract Client, Seclusion
3 1 26-05 09:32 VA Warning
4 1 26-05 11:02 PP Distract Client
5 2 21-06 14:51 VA Distract Client
6 1 23-06 21:23 VA Distract Client
7 2 24-06 17:02 VA -
8 3 29-08 11:22 VA Warning
9 3 31-08 08:13 PO Warning, Seclusion
10 3 31-08 10:48 PP Distract Client

Legend : EID = Event identifier, CID = Client identifier, VA = Verbal Aggression,
PP = Physical Aggression People), PO = Physical Aggression (Objects

Table 1: Excerpt from an action-response log of a care process

2. Problem Statement

Many processes contain action-response-effect patterns. As examples consider healthcare processes where
doctors respond to medical conditions with a number of alternative treatments, service processes where70

service desk employees respond to issues with technical solutions, and marketing processes where customers
may respond to certain stimuli such as ad e-mails with increased demand. Let us reconsider the example
of the healthcare process in a residential care facility in order to illustrate the challenge of discovering
an understandable and informative process representation from an event log containing action-response
relations. Of particular interest are the incidents of aggressive behavior from the clients and how these are75

handled by staff. Table 1 shows an excerpt from a respective event log. Each entry consists of:

1. an event identifier EID (which, in this case, is equal to the incident number),

2. a case identifier CID (which, in this case, is equal to the client identifier),

3. a timestamp,

4. an aggressive incident (action),80

5. one or more responses to this event.

Figure 1 a) shows the directly–follows graph that can be derived from the events of this log. It does not
suggest any clear structure of the process. Although this graph is only based on twelve events belonging to
three different event classes, it seems that almost any behavior is possible. In addition, this representation
does not provide any insights into certain hidden patterns [9]. However, if we take a closer look, we can see85

that there are effects for a certain response. For instance, we can see that, over time, the aggressive incidents
related to client 1 escalate from verbal aggression to physical aggression against objects and people. The
verbal aggression event in June (EID = 6) is probably unrelated to the previous pattern since it occurs
several weeks after. To gain an even deeper understanding, we need to take both the response and its effect
into account. When we consider this, we see that both client 1 and 2 escalate from verbal aggression to90

physical aggression after the verbal aggression was only countered with a warning.
These examples illustrate that explicitly including the responses and effects in the discovery phase is

important for answering the question of how to possibly respond to an action when a certain effect (e.g.,
de-escalating aggressive behavior) is desired. Therefore, our objective is to discover a model that: (1) shows
the action-response-effect process, and (2) reveals the statistical patterns of which responses lead to a desired95

or undesired outcome (effect). There are two main challenges associated with accomplishing this:

1. Graphical representation: From a control-flow perspective, action-response relations are a loop con-
sisting of a choice between all actions and a subsequent and-split that allows to execute or skip each
response. Figure 2 b) illustrates this by showing the Petri net representing the behavior from the log
in Table 1. Obviously, this representation does not allow to understand which responses lead to a100

desired or undesired effect.
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Figure 1: Directly-follows graph
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Figure 2: Petri Net

2. Effective filtering mechanism: The possible number of responses calls for a filtering mechanism that
allows to infer meaningful insights from the model. In the example above, we only have three event
classes and three event response classes (plus the “no response” class). This results in eight possible
responses. In case of 5 response event classes, we already face 32 (=25 possible responses classes).105

Including all these response arcs in a model will likely lead to an unreadable model that does not allow
to provide the desired insights.

In the next sections, we propose a novel technique, the ARE miner, that creates graphical representations
of statistical patterns in event logs that contain actions, responses, and effects.

3. Preliminaries110

As discussed, action-responses-effect patterns are observed in many processes and can provide diagnostic
information regarding the follow-up effects of responses. To discover these patterns, we build on the well-
established concept of event logs and introduce the concept action-response-effect logs. In this section, we
first formalize the action-response-effect logs. We then discuss how the effects of events are defined.

3.1. Action-Response-Effect Logs115

Starting from the event logs, we follow the definition that an event log is a set of sequences of events
being recorded. Each sequence registers the execution of a case, also called a trace, and each event of the
sequence represents an activity executed for the same case. Moreover, each event is associated with a set
of attributes, which provides information such as who executed this event, when is the event executed, and
etc. To define action-responses-effect logs, we follow the concept of an event log and associate each event120

with the action (e.g., activities occurred), its response, and the effects by explicitly defining these attributes
πl, πr, and πnext , respectively. We formalize action-response-effect logs as follows.

Definition 1 (action-response-effect Log). Let E be the universe of event identifiers. Let C be the
universe of case identifiers. Let d1, ..., dn be the set of attribute names (e.g., timestamp, resource, location).
Let A be the set of actions and R a finite set of responses. An action-response-effect log L is defined as125

L = (E, πc, πl, πr, πnext , πd1 , ..., πdn , <), where
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ID Timestamp Action Response Effect

1 12-05 09:53 VA Warning PO
1 13-05 13:35 PO Distract Client, Seclusion τ
1 26-05 09:32 VA Warning PP
1 26-05 11:02 PP Distract Client τ
2 21-06 14:51 VA Distract Client VA
1 23-06 21:23 VA Distract Client τ
2 24-06 17:02 VA - τ
3 29-07 11:22 VA Warning PO
3 31-07 08:13 PO Warning, Seclusion PP
3 31-07 10:48 PP Distract Client τ

Legend : VA = Verbal Aggression, PP = Physical Aggression
(People), PO = Physical Aggression (Objects)

Table 2: Excerpt of the event log action-response-effect

• E ⊆ E is the set of events,

• πc : E → C is a surjective function linking events to cases,

• πl : E → A is a surjective function linking events to actions,

• πr : E → 2R is a surjective function linking events to a set of responses,130

• πnext : E → C is a surjective function linking events to the effects,

• πdi : E → U is a surjective function linking the attribute di of each event to its value,

• < ⊆ E × E is a strict total ordering over the events.

Given an action-response-effect log L according to Definition 1, we shall use the shorthand notation
σ = 〈e1, . . . , en〉 in the remainder of this paper to refer to a trace that consists of n events with an identical135

case identifier. Furthermore, for any pair of events ei and ej with i < j, it holds that ei < ej according to
the strict total ordering of the events in log L.

The set of response events {re1, . . . , ren} of an event e is given by the function πr; we write πr(e) =
{re1, . . . , ren}. For each trace σ = 〈e1, . . . , en〉, the sequence of responses is 〈πr(e1), . . . , πr(en)〉. For example,
in the action-response-effect log listed in Table 2, for event e1: πc(e1) = 1 is the case of event e1, πl(e1) =140

“Verbal Aggression” (VA) is the action of e1, and πr(e1) = {“Warning”} is the set of responses of e1.

3.2. Effects of Responses

As we discussed, we aim to investigate whether a certain response to an action has an effect on the
follow-up event. As such, we measure the effectiveness of a response to an action by studying the effect. For
this aim, we first define the effects of events by using function πnext and introduce parameter ε for elapsed145

time. For each trace σ = 〈e1, ..., en〉, we define the effect for each ei, where 1 ≤ i < n as follows: if the
elapsed time to the next event ei+1 is less than ε, the effect πnext(ei) of ei is the action of ei+1, else we say
that the effect is a silent action τ . Formally, if πtime(ei+1) − πtime(ei) ≤ ε, then πnext(ei) := πl(ei+1), else
πnext(ei) := τ .

To test the hypothesis whether an effect is independent of the response to an action, the number of150

observed events is compared to the number of expected events of different responses and effects. To calculate
the number of observed events, we create a matrix (table) where each cell is filled with the number of observed
events of a response and an effect. Let a ∈ A be an action, R = {r1, · · · , rm} be a set of responses, and
C = {c1, · · · , cn} a set of effects. We define a |R| × |C | matrix, where each row represents a response ri,
each column represents an effect cj , and each cell counts the number of observed events that have response155

ri and effect cj . We have
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Observed PO PP VA τ Total

Warning 250 400 200 50 900
Held with force 20 50 50 10 130
Seclusion 30 50 20 10 110
Terminate contact 100 100 90 10 300
Distract client 100 150 40 20 310
Total 500 750 400 100 1750

Expected PO PP VA τ Total

Warning 257.1 385.7 205.7 51.4 900
Held with force 37.1 55.7 29.7 7.4 130
Seclusion 31.4 47.1 25.1 6.3 110
Terminate contact 85.7 128.6 68.6 17.1 300
Distract client 88.6 132.9 70.9 17.7 310
Total 500 750 400 100 1750

Legend : VA = Verbal Aggression, PP = Physical Aggression (People), PO =
Physical Aggression (Objects)

Table 3: Excerpt of the tables used to perform high-level statistical tests; horizontal categories: effect, vertical categories:
response

Observed PO PP VA τ Total

Terminate contact = 0 300 500 210 90 1100
Terminate contact = 1 100 100 90 10 300
Total 400 600 300 100 1400

Expected PO PP VA τ Total

Terminate contact = 0 314.3 471.4 235.7 78.6 1100
Terminate contact = 1 85.7 128.6 64.3 21.4 300
Total 400 600 300 100 1400

Legend : VA = Verbal Aggression, PP = Physical Aggression (People),
PO = Physical Aggression (Objects)

Table 4: Excerpt of the tables for an individual response used to perform statistical tests; horizontal categories: effect

freqa,R,C =


f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n

...
...

. . .
...

fm,1 fm,2 · · · fm,n


where fi,j = freqL(a, ri, cj) = |{e ∈ L | πl(e) = a ∧ ri ∈ πr(e) ∧ πnext(e) = cj}| (1)

For instance, given a log L as listed in Table 2, freqL(“VA”, “Warning”, “PO”) =|{e1, e8}|= 2. Consid-
ering Table 3 and omitting the column totals and row totals, it exemplifies a matrix freqa,R,C . If the effects
are independent of responses, then we should observe that the distribution of effects of a response is similar160

to the total distribution.
Each row ri presents the distribution of effects c1, ..., ck to the response ri. To test whether each individual

response ri has an influence on the effects, we define freqa,r,C as a 2× |C| matrix:

freqa,r,C =

(
f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n

)
(2)

where f1,j = freqL(a, r, cj) and f2,j = |{e ∈ L | πl(e) = a ∧ r /∈ πr(e) ∧ πnext(e) = cj}|.
An example of freqa,r,C where r is “Terminate contact” is listed in Table 4. In the following section,165

we describe that in our ARE miner first a chi-squared test is carried out. This allows us to calculate
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Algorithm 1 Compute graph

Input: Event log L
Output: Graph G = (V,≺)
1: {STAGE 1: High-Level Statistics}
2: for a ∈ A do
3: Initiate matrix O[a]← freqa,R,C {see Equation 2, calculate the observed values}
4: Compute matrix E[a] {calculate the expected values by following the chi-square test, see [10]}
5: Compute χ2

a =
(O[a]−E[a])2

E[a]
{To test the dependence between responses R and effects A ∪ {τ}}

6: if χ2
a is significant then

7: {O[a] differs from E[a], thus responses R have a statistically significant influence on the effects C}
8: {STAGE 2: Detailed Statistics}
9: for response r ∈ R do
10: Compute matrix O[a]r, E[a]r, and χ2

a,r

11: if χ2
a,r is significant then

12: {STAGE 3: Influential Points}
13: Compute adjusted standardized residuals ASRc {see Section 4.4}
14: for effects c ∈ A ∪ {τ} do
15: if ASRc is significant then
16: {draw the arc from r to c}
17: V ← V ∪ {as} ∪ {r}, ≺←≺ ∪{(as, r)} ∪ {(r, c)}
18: end if
19: end for {effect}
20: else
21: {χ2

a,r is insignificant, i.e., r has no significant influence on C. We do not draw node r or any arc from r to C}
22: end if
23: end for {response}
24: else
25: {Observed O[a] follows the expected values E[a], thus response R has no statistically significant influence on the effects

C; thus, no arcs are drawn}
26: end if
27: end for {action}
28: return G

the expected values and test the statistical dependency between responses and effects. The chi-square
test compares the observed frequencies to the expected frequencies. If they differ significantly, then the
null hypothesis is rejected, which means we cannot rule out that there is a statistical dependency relation
between the response and the effect.170

The complete event logs containing action-response-effect are used in the ARE miner that is proposed
in this paper. The next section elaborates on this.

4. ARE Miner

Based on the formalization introduced the previous section, we use this section to propose the ARE
miner as a novel discovery technique. The goal of the ARE miner is to generate understandable process175

representations that provide the user with the required insights into the execution of the process. First, we
describe the required pre-processing steps. Then, we elaborate on the conceptual approach of the ARE miner,
which consists of three main stages: 1) computing high-level statistics, 2) computing detailed statistics, and
3) identifying influential points.

4.1. Pre-processing the Event Log180

We first pre-process the log to obtain the effects of responses. Since we are studying the effects of
a response to an action, the duration between a response and its effects influences the likelihood of a
statistical relation between the two. Let us return to our example: if there is an aggressive incident, there
is a given response to this incident. However, if the next incident takes place after a long time (e.g., a year)
it is unlikely that this new incident is still dependent on the response to the initial action. Thus, we use the185

parameter epsilon (ε), see Section 3.2. ε represents the maximum duration between two events in which the
first event is still considered to have an effects on the second event. We can define ε in two ways: (1) based
on the data or (2) based on the knowledge of a domain expert. If we base the ε on the data, we define it as
equaling the average duration of the events. To ensure that outliers do not influence the average, depending
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on the distribution of the data, a number of actions can be taken. For our specific example, the data is190

exponentially distributed. To account for this, we select 80% of the data when sorted on duration and take
the mean of this subset of data. This results in an ε of 8.9 days. We round this up to full days (ε = 9)
due to the granularity of our data. Other distributions in the data are likely to occur as well. One common
example is that the data is normally distributed. In this case, we propose to define ε equaling the mean
plus two standard deviations to the right (longest duration). This ensures that a subset of the data closest195

to the mean is captured.
We can also base the ε on the input of a domain expert. Consider the healthcare organization in our

qualitative evaluation, see Section 5.2. We consulted with a behavioral expert in the organization. The
domain expert from the organization defined ε as equaling seven days. This is what the domain expert
indicates is the likely maximum duration between two events (aggressive incidents) where the response of200

the first incident still has an effect on the behavior of the client in the second incident. Based on ε, we
introduce state τ . It represents the state where no next incident occurs within the defined duration of ε. In
Table 2 we can see, for example, that distracting the client seems to be related to τ .

Another step in the pre-processing phase is to check the statistical assumptions. The Chi-square test,
which we will elaborate on in the next sections, has a number of assumptions [11]: 1) the data should be205

frequencies or counts, 2) the categories of the variables are mutually exclusive, 3) each subject may only
contribute to one cell (no repeated measures), 4) both variables are measured as categories, 5) the sample
size should be sufficiently large. The first four assumptions are data requirements that need to be checked
by the analyst that applies the ARE miner. The fifth assumption can be automatically checked by the ARE
miner itself.210

With regard to the fifth assumption (i.e., sufficient sample size), we implement a heuristic selection
criterion: the value of the expected cells in each table should be 5 or greater in at least 80% of the cells [11].
If this criteria is not met, the action-response or response-effects pair is excluded from the analysis and an
NA value is the output.

4.2. Stage 1: Computing High-Level Statistics215

After pre-processing the event log, we investigate for each action the significant relation between the
responses and the effects. In our example, the client shows a certain type of aggressive behavior (the
action). Given this, we are interested in how the response of a caretaker to that incident has an impact on
the follow-up incident (effect). Hence, we will explain the ARE miner with a fixed initial action. The details
are formalized in Algorithm 1. In the following, we will explain how the specific steps from Algorithm 1 are220

linked to the conceptual considerations.
In Table 3, we show an example of the observed and calculated expected frequencies for the action

physical aggression against objects (lines 3 & 4 in Algorithm 1). This allows us to perform a Chi-square
test [10] (line 5). Based on a confidence level α (usually 95%), the calculated Chi-square (χ2) test value is
compared to the Chi-square distribution to see if there is at least one pair of response-effect significantly225

different. If the Chi-square test value is insignificant, the action is excluded from the graphical representation
(line 21). If the Chi-square is significant (line 6), this indicates that the effects may depend on the response.
We then move to the second stage, see Section 4.3.

We demonstrate this first stage of the ARE miner by applying it to a designed example based on our
real-world data set presented in Table 3. Based on the observed values, we can calculate the expected values
in the table, for example, the expected value for the first cell: response Terminate Contact and effects VA
= Nr×Nc

E[a][r][c] = 300×400
1750 = 68.6. We know from Table 3 that there are five response classes and four effects

classes, so the degrees of freedom: c = (5−1)× (4−1) = 12. Given all this, we can calculate the Chi-square
test value for the overall table:

χ2
c =

5∑
i=1

(OWarning,PO − EWarning,PO)2

EWarning,PO
+ ....+

(ODistract client,τ − EDistract client,τ )2

EDistract client,τ

χ2
12 =

(250− 257.1)2

257.1
+ ...+

(10− 17.7)2

17.7
= 63.47
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Now we need to determine if this value is significantly different from the mean of the Chi-distribution
[12]. The formula for calculating the p-value is complex and will thus not be discussed in detail in this paper.230

For more details we refer to [12]. In the above example, the p-value (< 0.001) shows that our Chi-square
value is significant. This indicates that for at least one pair of response-effects given action PO there is a
significant difference from the expected frequency. Thus, we perform a Chi-square test for each individual
response.

4.3. Stage 2: Computing Detailed Statistics235

In the second stage of the ARE miner, we perform the Chi-square test again on each response class to
determine for which response we need to perform post-hoc statistical tests (lines 8 - 10 in Algorithm 1). For
this purpose we create dummy variables. A dummy variable is made for each individual response, which
takes the value of 0 or 1. The new table we create is a 2 x 4 table where the rows represent the response
either taking a 0 or 1 value, see Table 4. Note that the degrees of freedom changes to three. The same240

formulas are used to calculate the individual response Chi-square score and the corresponding p-value. A
Bonferroni correction [13] is made to correct the critical value for the fact that on the same table multiple
sets of analyses are performed. The Chi-square test identifies for which responses there is at least one effects
that is significantly different from the expected frequency. If the Chi-square value is significant, we create
a node for the response and perform post-hoc tests to identify the exact pairs of response-effects that are245

significant (line 11).
We will demonstrate this stage on an example case. We test five times (one for each response). Thus,

we apply the Bonferroni correction [13] on a confidence level of 95% (meaning α = 0.05): 0.05
5 = 0.01. If we

take Table 4, we can use the same formulas as presented in the previous section to calculate the expected
values. Note that we assume independence of responses. Thus, if there are two responses, the action is250

counted twice: once for response 1 and once for response 2. Therefore, the observed frequencies in Table 3
are not necessarily equal to those in Table 4. If we perform the Chi-square test for the response Terminate
contact we get a Chi-square score of 31.96 with a p-value < 0.001. Thus, for the response Terminate contact
there is at least one effects that is significantly different from the expected frequency. In the next section,
we describe how a post-hoc test will need to identify the exact pairs for which this is true.255

4.4. Stage 3: Identifying Influential Points

In the last stage, the post-hoc tests are performed to test which exact pairs of response-effects have a
significant contribution to the Chi-square test value. To do so, the adjusted standardized residuals (ASR)
[14] are calculated (line 13 in Algorithm 1). They represent a normalization of the residuals (observed -
expected frequency). As the residuals can take either a positive or negative value we use two-sided testing.260

In order to improve the interpretability, we transform the α level into a critical value. We refer to [12] for
details on this approach. If |ASR| > criticalscore the difference between observed and expected frequency
is significant. A significant score means that a specific pair of response-effects has a significant impact on
the overall test value. We refer to this as an influential point.

For each influential point, arcs are drawn in the graphical representation (lines 14-17). If the score is265

insignificant, no arc is drawn for that pair of response-effects. We first draw an arc from the action to the
responses. Then, we draw an arc from the response to the effect for which we found a significant relation.
If the observed frequency is larger than the expected frequency, i.e., the response leads to an increase in
frequency of effects, we draw a thick arc. Correspondingly, if the observed frequency is lower than the
expected frequency we draw a thin arc. The total number of graphical representations created equals the270

number of actions for which a significant Chi-square score is found (line 25).
Now, we turn to the example from Table 4. From the previous section we know that the response

Terminate contact results in a significant Chi-square score. To calculate which points are influential points
we calculate the adjusted standardized residuals for each pair. To exemplify, we show the calculation of the
ASR for the pair Terminate contact = 1 and VA:

ASR =
90− 64.3√

64.3 ∗ (1− 64.3
300 ) ∗ (1− 64.3

300 )
= 4.08
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Given our Bonferroni correction gave us an alpha of 0.01 (see previous section), we need to test on the 99 %
confidence level. The critical absolute value for this is 2.57. Thus, if our ASR value is > |2.57|, we mark it as
an influential point and draw an arc in the graphical representation. In the example of the pair Terminate
contact = 1 and VA the ASR is larger than the critical score (4.08 > 2.57). Therefore, we draw an arc in275

the graphical representation of this example.
To increase the readability of the graph, we use a variety of arcs. First, on the arc from an action to

a response, we indicate the observed frequency of the behavior. This shows how often this specific action-
response pattern is observed. Next, on the arc from a response to an effects, we display the observed
frequency and the expected frequency in brackets. This shows whether or not the response leads to an280

increase or decrease in the behavior type of the effects. To also display the strength of the relation between the
response and the effects in the graph, we adjust the thickness of the arc based on the adjusted standardized
residuals. Recall that this value needs to be > |2.57| in order for an arc to be drawn. We introduce six
classes of effect strength, i.e. three positive classes and three negative classes. We choose to use a total of six
classes to differentiate between the strength of the effect as this is a number that is easily comprehensible,285

yet allows for sufficient distinctions between effect sizes.
We determine the classes by identifying the maximum and minimum ASR scores for each action table.

Subsequently, we create the range of ASR scores for each class by dividing the scores between the maximum
ASR score and 2.57 equally into three classes. The same structure applies to the negative scores, but then
we use the difference between the minimum ASR score and -2.57. As an example, assume the maximum290

ASR value is 8.30, and the minimum ASR value is -4.37. The three positive classes will be, from least thick
to thickest; (1) [2.57:4.48], (2) [4.49:6.39], and (3) [6.40:8.30]. In line, the three negative classes will be, from
least thick to thickest: (1) [-2.57:-3.17], (2) [-3.18:-3.77], and (3) [-3.78:-4.37].

After applying the last stage of the ARE miner on all actions, responses, and effects on the aforementioned
example, we obtain a total of three graphical representations (one for each action). In the next section, we295

evaluate the ARE miner both on an artificial as well as a real-world data set to demonstrate that it indeed
can generate understandable process representations that provide the user with the required insights into
the process execution.

5. Evaluation

The goal of this section is to demonstrate the effectiveness of the ARE miner to discover models that300

allow to obtain meaningful insights into action-response-effect patterns. To this end, we implemented the
ARE miner in Python1 and conducted a quantitative as well as a qualitative evaluation. In the quantitative
evaluation (Section 5.1), we use an artificial data set to systemically explore in a large range of constellations
how the representations produced by the ARE miner compare to traditional process-oriented representations.
In the qualitative evaluation (Section 5.2), we apply the ARE miner to a real-world action-response-effect305

log and investigate to what extent the discovered models are meaningful from a domain perspective.

5.1. Quantitative Evaluation

This section discusses the quantitative evaluation of the ARE miner. Our goal is to develop an under-
standing of how the representations produced by the ARE miner compare to directly-follows graphs, i.e.,
traditional process-oriented representations, in a variety of different settings. To this end, we generate an310

artificial data set that represents a broad spectrum of real-life scenarios. Using this set, we can systemat-
ically explore under differing circumstances how key characteristics, such as the number of arcs, develop.
In Sections 5.1.1 and 5.1.2, we first elaborate on the artificial data set generation and the setup. Then, in
Section 5.1.3, we present the results.

1Source code and results: github.com/xxlu/ActionEffectDiscovery
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Effect

n1 n2 n3 n4
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n

se

m1 0.25 0.25 0.25 0.25

m2 0.25 0.25 0.25 0.25

m3 0.25 0.25 0.25 0.25

m4 0.25 0.25 0.25 0.25

0.00 0.00 0.00 0.00

ASD = 0.00

Effect

n1 n2 n3 n4

R
e
sp

o
n

se

m1 0.80 0.00 0.00 0.20

m2 0.25 0.25 0.25 0.25

m3 0.00 0.00 1.00 0.00

m4 0.30 0.10 0.30 0.30

0.34 0.12 0.43 0.13

ASD = 0.25

Effect

n1 n2 n3 n4

R
e
sp

o
n

se

m1 1.00 0.00 0.00 0.00

m2 0.00 1.00 0.00 0.00

m3 0.00 0.00 1.00 0.00

m4 0.00 0.00 0.00 1.00

0.50 0.50 0.50 0.50

ASD = 0.50

Figure 3: Three possible frequency tables with n=4, m = 4, and δ = 0.05.

5.1.1. Data Set Generation315

To obtain artificial data representing a broad spectrum of possible real-life situations, we generate a set
different frequency tables (see Table 3 for an example). The main rationale behind this approach is that
frequency tables summarize all relevant characteristics from the log that we build on in the context of the
ARE miner. Hence, generating frequency tables instead of actual action-response-effect logs allows us to
precisely control these characteristics.320

To illustrate the details of the frequency table generation, recall that a frequency table captures the
number of times a response r ∈ R leads to an effect e ∈ E, given an action a ∈ A. For example, the first
row from Table 3 describes how many times we observe a particular effect (i.e., PO, PP , V A, or τ) for the
response Warning. Taking a look at the numbers, we see, for example, that the response Warning leads
to PO in 250 cases and to PP in 400 cases. Intuitively, these absolute numbers can also be converted into325

probabilities. Given the total of 900 observations for the response Warning, we can determine that the
probability of a warning leading to PO is approximately 0.28 (250/900). If we determine the probabilities
for the other effects as well, we obtain the probability vector (0.28, 0.44, 0.22, 0.06). In statistical terms, this
probability vector represents the probability mass function (PMF) of the underlying discrete distribution
that we observe in the first row of Table 3. Since such a probability vector can be computed for every row,330

the frequency table can be described by using m probability vectors (v1, . . . , vm), where m is equal to the
number of rows and, therefore, also to the number of responses.

To generate an artificial data set, we build on these probability vectors representing PMFs. The advan-
tage of doing so is that they allow us to systemically capture a large range of possible real-life constellations.
Intuitively, there are two extreme scenarios for an action-response-effect pattern. The first is if a consid-335

ered response is only leading to a single effect as, for instance, described by the probability vector (1.0,
0.0, 0.0, 0.0). The second is if the likelihood for all effects is the same, as, for instance, described by the
probability vector (0.25, 0.25, 0.25, 0.25). Besides these two extremes, there is an infinite number of alter-
native probability vectors for a given a number of n effects. Therefore, we introduce the parameter δ. By
requiring that each probability pi that is part of a probability vector v = (pi, . . . , pn) is a multiple of δ, we340

guarantee that the number of possible probability vectors is finite. Keep in mind that
∑n
i=1 pi = 1 because

we are dealing with vectors representing PMFs. Based on these considerations, we compute the set V of
all possible probability vectors for a given number of effects n and the parameter δ. Given a number of
m responses, the total set of possible frequency tables F is then given by the n-ary Cartesian power of V ,
i.e., F = V m = {(v1, . . . , vm) | vi ∈ V for every i ∈ {1, . . . ,m}}. We use f = (v1, . . . , vm) to refer to an345

individual constellation from F .
To characterize the potentially large number of possible frequency table constellations, we introduce the

complexity indicator average standard deviation (ASD). The ASD is the arithmetic mean of the standard
deviations of the individual columns of a frequency table f ∈ F . As such, it quantifies to what extent the
probabilities of different responses leading to the same effect differ from each other. The closer ASD is to350

zero, the smaller the differences across the responses. The closer ASD is to the maximum possible average
standard deviation for f , the higher the differences across the responses. Note that this maximum value for
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ASD depends on the number of responses. If, for instance, m = 4, then the maximum ASD is 0.5. Figure
3 shows three possible frequency tables and their ASDs resulting from a generation run with n=4, m = 4,
and δ = 0.05. The left and the right tables show two extremes with the ASD being 0.00 and 0.50. The355

example in the center shows a rather mixed case. These three examples highlight the broad spectrum of
frequency table constellations that may arise in practice and we, therefore, need to systematically consider.

Based on the approach introduced above, we generated an artificial data set with m = 4, n = 3, δ = 0.2.
Note that higher values for parameters m and n as well as a smaller value for δ mainly affect the granularity
of the results but not the results themselves. Therefore, we selected parameters that balance granularity360

and computational effort. In total, this choice of parameters results in a set F containing 175.616 different
frequency tables. We will refer to these as constellations. To make sure that the generated constellations
also include patterns with a low frequency (i.e., smaller than δ), we randomly add and substract values of
0.01 up to 5 times per row in each f . Figure 4 visualizes the distribution of the resulting constellations
with respect to the ASD. We can see that it represents a discrete representation of the Bell curve where365

constellations with an ASD of between 0.20 and 0.25 are most likely.
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Figure 4: Distribution of constellations with respect to the ASD.

5.1.2. Setup

In our evaluation experiments, we compare three different techniques:

• ARE miner : We implemented the ARE miner in Python2 as described in Section 4. Our implementa-
tion also automatically performs all assumption checks. Note our implementation may return a graph370

without any edges in case no significant edges could be identified.

• Naive DFG : As a first baseline, we use a naive directly-follows graph implementation. This configu-
ration returns an arc for every observed response-effect pattern, i.e., for every value in f ∈ F that is
above 0.

• Filtered DFG : As a second baseline, we use a filtered directly-follows graph implementation. This375

configuration returns an arc for an observed response-effect pattern if the relative frequency of that
pattern with respect to the most frequent pattern from the considered constellation f ∈ F is above the
threshold τ . For the purpose of our experiments we set τ = 0.8. This means that if in a constellation
f the most frequent pattern occurs with a probability of 0.5, then every pattern with a probability of
less than 0.1 will be removed.380

For each of the configurations above, we compute which arcs they generate for each f ∈ F . To quantify
the results, we determine 1) the number of arcs generated for each f , and 2) the fraction of significant arcs

2The code is publicly available for reproducibility: github.com/xxlu/ActionEffectDiscovery.
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(b) Naive DFG
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(c) Filtered DFG

Figure 5: Overview of number of generated arcs for each f ∈ F

generated for each f . The first performance measure allows us to understand to what extent the total number
of arcs produced by the ARE miner compare to the two baselines. On the one hand, we expect to reduce
the overall complexity and, therefore, generate fewer arcs. On the other hand, we want to demonstrate the385

applicability of the ARE miner, which means that we want to demonstrate that the ARE miner does not
generate zero arcs or a single arc in the majority of constellations. The second performance measure helps
us to understand how many of the significant arcs generated by the ARE miner are also covered by the two
baselines.

5.1.3. Results390

Below, we present the results from the quantitative evaluation. We first analyze the number of arcs
generated by each technique. Then, we take a detailed look at the fraction of significant arcs.

Number of arcs. The results of our evaluation experiments with respect to the number of arcs are visualized
in the bubble charts in Figure 5. The charts show how often a certain number of arcs (y-axis) were
generated for a set of constellations from F with a particular ASD (x-axis). A first glance reveals that the395

representations produced by the ARE miner differs considerably from the respective DFGs. Most notably,
on average, the number of arcs generated by the ARE miner is much lower than the number of arcs generated
by the naive DFG-based approach. As for the number of arcs, the ARE miner seems to produce, on average,
around the same number of arcs as the filtered DFG-based approach. Considering the ASD values, we see
that the naive DFG-based approach produces a roughly equal number of arcs over the range of ASD values.400

If we take a closer look at the ARE miner, we see that it draws less arcs when the ASD is low and more
when the ASD is high. We follow up on this observation below. Comparing this to the filtered DFG-based
approach, we see that the DFG-based approach seems to do the opposite. It generates more arcs when the
ASD is low and fewer when it is high.

Table 5 provides a detailed view on the results. It shows that the average number of arcs produced by405

the ARE miner in comparison to the naive DFG-based approach is about 4.10 lower (6.83 versus 10.93) and
about 0.44 lower than the filtered DFG-based approach (6.83 versus 7.27). Note, however, that this number
must be considered in the context of the chosen n and m. Since the maximum number of possible arcs is 12,
filtering an average of 4 arcs has a notable effect on the resulting representations. If we take a closer look
at the numbers, we can see that, as the ASD increases, the ARE miner draws more arcs and the filtered410

DFG-based approach draws less. The lower the ASD, the more arcs they contain. This suggest that, while
the average number of arcs are almost the same, the filtered DFG-based representations may contain arcs
that the ARE miner decided to suppress and tends to miss those the ARE miner decided to draw. This
is caused by the fact that the notion of statistical significance is a relative consideration and not based on
absolute numbers. Realizing this, the next section looks into more detail into which arcs each technique415

includes in the respective representations.

Fraction of significant arcs. To understand how the considered configurations differ on a semantic level, it is
helpful to analyze which arcs the generated representations have in common. Building on the premise that
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Number of arcs

ASD 0 1 2 3 4 5 6 7 8 9 10 11 12 Total Avg.
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n
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e

0.00-0.05 58 20 36 6 2 0 0 0 0 0 0 0 0 122 0.97

0.05-0.10 177 417 1129 588 642 179 23 1 0 0 0 0 0 3156 2.55

0.10-0.15 126 45 459 2145 4829 4680 4577 1194 306 34 1 0 0 18396 4.82

0.15-0.20 180 0 67 730 3439 8491 12335 11101 5460 1609 262 18 0 43692 6.21

0.20-0.25 138 0 13 203 1415 5075 11257 15767 13553 6697 2241 318 59 56736 7.14

0.25-0.30 84 0 8 34 319 1433 4458 8997 10969 7778 3132 688 80 37980 7.79

0.30-0.35 18 0 0 0 11 137 733 2250 4010 3883 1951 440 43 13476 8.37

0.35-0.40 0 0 0 0 0 10 44 197 516 644 406 73 0 1890 8.72

0.40-0.45 0 0 0 0 0 0 6 16 41 65 40 0 0 168 8.70

Total 781 482 1712 3706 10657 20005 33433 39523 34855 20710 8033 1537 182 175616 6.83

D
F

G
w

it
h

n
o
is

e
1
0
0
%

0.00-0.05 0 0 0 0 0 0 1 0 0 18 18 18 67 122 11.07

0.05-0.10 0 0 0 0 0 0 0 0 18 108 558 852 1620 3156 11.25

0.10-0.15 0 0 0 0 0 0 0 15 57 612 2724 6588 8400 18396 11.23

0.15-0.20 0 0 0 0 0 0 0 21 156 1536 6927 17412 17640 43692 11.16

0.20-0.25 0 0 0 0 0 0 0 9 288 2454 11631 26340 16014 56736 10.97

0.25-0.30 0 0 0 0 0 0 0 9 342 3084 11859 16842 5844 37980 10.65

0.30-0.35 0 0 0 0 0 0 0 0 174 1494 5340 5418 1050 13476 10.42

0.35-0.40 0 0 0 0 0 0 0 0 42 432 942 456 18 1890 9.99

0.40-0.45 0 0 0 0 0 0 0 0 6 90 72 0 0 168 9.39

Total 0 0 0 0 0 0 1 54 1083 9828 40071 73926 50653 175616 10.93

D
F

G
w
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n
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e
8
0
%

0.00-0.05 0 0 0 10 0 0 54 9 9 30 3 3 4 122 7.13

0.05-0.10 0 0 0 96 99 15 252 603 735 546 522 228 60 3156 8.15

0.10-0.15 0 0 0 24 360 354 792 2865 4791 4938 3357 915 0 18396 8.40

0.15-0.20 0 0 0 0 534 1245 2181 7440 12855 15255 4176 6 0 43692 8.14

0.20-0.25 0 0 0 306 1404 2766 5877 15018 24468 6891 6 0 0 56736 7.38

0.25-0.30 0 0 0 804 3057 5532 7884 14937 5766 0 0 0 0 37980 6.33

0.30-0.35 0 0 0 354 2946 3498 4158 2520 0 0 0 0 0 13476 5.41

0.35-0.40 0 0 0 372 870 510 138 0 0 0 0 0 0 1890 4.22

0.40-0.45 0 0 0 78 90 0 0 0 0 0 0 0 0 168 3.54

Total 0 0 0 2044 9360 13920 21336 43392 48624 27660 8064 1152 64 175616 7.27

Table 5: Number of arcs generated by each technique

statistically significant arcs provide the insights we are looking for from a semantic point of view, we are
therefore interested in the fraction of significant arcs produced by the filtered DFG-based approach. Note420

that a comparison with the naive DFG-based approach is obsolete since the naive DFG-based approach will
contain all possible and, therefore, also all significant arcs. Figure 6 visualizes the number of shared and
non-shared arcs for both the filtered DFG-based approach and the ARE miner. More specifically, it shows
how many arcs, on average, are produced for the different constellations.

For low values of ASD, we can see that both the number of arcs generated by the ARE miner and the425

number of shared arcs are very low. However, the number of arcs produced by the filtered DFG-based
approach is quite high for low ASD values. Even in the lowest bin, from 0 to 0.05, the filtered DFG-
based approach generates an average of 7.1 arcs. With an increasing ASD also the number of shared arcs
increases. In general, this is in line with our expectations. The closer we get to an ASD of 0, the more
equally distributed is the data. Hence, the ARE miner will identify only a few significant arcs, if any. The430

closer we get to the maximum ASD, the more we face a random distribution. In such a setting, the ARE
miner is more likely to identify significant arcs and, therefore, generates an increasing number of arcs. Since
the number of arcs produced by the filtered DFG-based approach is relatively stable, the number of shared
arcs also increases when we move to the high end of the ASD value.

From a semantic perspective, Figure 6 highlights the importance of building on the statistical notion we435
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Figure 6: Average number of arcs drawn by the ARE miner and the filtered DFG-based approach, plus the number of shared
arcs that are drawn when comparing the two techniques.

use in the ARE miner. The filtered DFG-based approach generates a relatively stable number of arcs across
all constellations although the number of statistically significant and, therefore, meaningful arcs differs
considerably. Constellations with a very low ASD simply do not provide evidence that there are many
meaningful patterns to detect. This, however, cannot be captured by filtering arcs based on frequency. It
requires the statistical perspective exploited by the ARE miner.440

In summary, the quantitative evaluation illustrates that the ARE miner performs well in a broad range
of possible situations. We showed that 1) the ARE miner leads to a notable reduction in the number of
arcs compared to the naive DFG-based approach, and 2) the ARE miner produces a different, and more
meaningful, set of arcs than the filtered DFG-based approach. This highlights the value of building on
the notion of statistical significance in this setting. Next, it is interesting to apply the ARE miner on a445

case study to investigate if the graphs produced by the ARE miner can provide relevant and meaningful
domain-specific insights.

5.2. Qualitative Evaluation

This section discusses the qualitative evaluation the ARE miner. Our goal is to demonstrate the effective-
ness of the ARE miner to discover models that allow to obtain meaningful insights into action-response-effect450

patterns.

5.2.1. Data set

To evaluate the ARE miner, we use a real-world data set related to the care process of a Dutch residential
care facility. The event log contains 21,384 recordings of aggressive incidents from 1,115 clients. The process
captured in this log concerns the aggressive behavior of clients in their facilities and the way client caretakers455

respond to these incidents. The log consists of aggressive incidents of clients that belong to one of four
different action classes. Each of these actions is followed by a number of measures from the caretakers as
responses to the action. Each response belongs to one of nine different response classes. In line with the
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Actions

Physical aggression towards people 11,381

Physical aggression towards objects 1,446

Verbal aggression 5,778

Self-injury 2,779

Total 21,384

Responses

Talk to client 9,279

Held with force 3,624

Leave room 3,638

Distract client 2,561

Send away 3,169

Seclusion 1,156

Other measures 209

None 783

Ignore client 70

Total 24,489

Effects

Physical aggression towards people 5,897

Physical aggression towards objects 686

Verbal aggression 2,369

Self-injury 1,429

No next incident (τ) 9,888

Total 20,269

Clients

Minimum number of actions per client 1

Maximum number of actions per client 449

Average number of actions per client 19.2

Total 1,115

Table 6: Overview of the characteristics of the real-world data set

description of the ARE miner, we transformed this log into an action-response-effect log by defining the
next aggressive incident of a client as effect, given it occurred within an ε of 9 days as indicated based on460

the data. Otherwise, the effect is determined with τ . As a result, we obtain a total of five different effect
classes. Table 6 summarizes the characteristics of our data set.

5.2.2. Results

Below we present the results from the qualitative evaluation. We focus on three particular aspects: 1)
the interpretation of the resulting graphs, 2) the insights we can obtain from these graphs, and 3) how the465

graphs compare to directly-follows graphs.

Interpretation. After applying the ARE miner to the data set, we obtain four graphs, one for each action
class. In Figure 7 we show the resulting graphs for each action. Each arc in these graphs denotes an
influential point representing a response-effect interaction. Recall that the number of observed instances
for influential points is significantly higher (solid arc) or lower (dotted arc) than the statistically expected470

number of instances. In addition, the thickness of the arc visualizes the size of the effect, i.e., the thicker
the arc, the stronger the effect. As illustrated by the graphs, the resulting number of arcs is, despite the
complexity of the log, quite low since only a few arcs represent statistically significant interactions. This
allows us to study the impact of each response to an action in detail.

To illustrate this, consider Figure 7a, where the initial action is Physical aggression against objects475

(po s). Among others, this graph reveals that Terminate contact has been observed 299 times in our data
set as a response to Physical aggression against objects. We can further see that in 48 instances, this
response has led to the effect Verbal aggression. In brackets we can see that the expected value based on
statistics for this arc is 32 instances. Thus, there are significantly more instances of Verbal aggression after a
Terminate contact response than statistically expected, which is visualized using a solid arc. If we consider480

the response Seclusion, we can see that we observe an opposite effect for Tau (τ). Here, the observed
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number of instances (27) is significantly lower than the expected number of instances (45). Therefore,
the interaction is visualized using a dotted arc. What both cases have in common is that they represent
statistically significant interactions, which increase our understanding of what likely our unlikely effects a
particular response will trigger.485

Insights. There are a number of relevant insights we can obtain from the graphical representations in
Figure 7. For instance, Figure 7a reveals that Seclusion is not a good response to the action Physical
aggression against objects since it results in a significantly higher number of instances of Physical aggression
against people (PP). The frequencies show that the response Seclusion is almost 1.7 times as likely to result
in effect Physical aggression against people than statistically expected. At the same time, the response490

Seclusion leads to a significantly lower likelihood of having no further aggression incident, as indicated by
Tau. This highlights even further that Seclusion as a response to Physical aggression against objects is not
a preferable choice.

In a similar fashion, we can interpret the resulting graphs for the other three actions. However, particu-
larly Figure 7c and Figure 7d highlight that also focusing on statistically significant interactions may result495

in relatively complex representations. From an insight perspective, we can make three main observations:
1) depending on the action, the same response may lead to different outcomes, 2) some response-effect pairs
are only significant for some actions, and 3) some response-effect pairs are significant across all actions.

The first observation is best illustrated by the response No measures. We can see that the response No
measures leads to very different outcomes in Figure 7b and Figure 7c. If No measures is used as a response500

to the action Verbal aggression (Figure 7b), we observe fewer instances of Tau than statistically expected.
In other words, it leads to an escalation of the aggression since it is less likely that no next incident occurs.
By contrast, if No measures is used as a response to the action Self-injurious behavior (Figure 7c), it leads
to a significantly higher number of instances of Tau than statistically expected. What is more, it leads to
significantly fewer instances of Physical aggression towards people than statistically expected. Both these505

outcomes can be considered as a deescalation of the aggressive behavior which are valuable insights for the
management of this behavior.

For the sake of illustrating the second observation, consider the response Talk to client, which only occurs
as part of a significant interaction in the context of the action Self-injurious behavior (Figure 7c). Here, we
see that it leads to an escalation of violence, i.e., to significantly more Physical aggression towards people.510

An example for the third observation is the response Seclusion, which has a similar effect across all four
actions. We see that it leads to significantly more Physical aggression towards people and significantly less
to Tau. This means that we see more of the most severe form of aggressive behavior and, at the same
time, a lower likelihood of no next aggressive incident. Thus, we can globally speak of an escalation of the
violence as a result of this response. Notice that for Self-injurious behavior there is no effect. This is logical515

considering that this response is used to restrain a client from being violent. As such, this response is rarely
used in a setting where the victim is the client him/herself.

Comparison to directly-follows graph. Figure 8 shows the directly-follows graphs obtained for the actions
Physical aggression towards objects and Physical aggression towards people using the process mining tool
Disco. For the sake of readability, the filtering settings are set to 5% and 1% respectively, i.e., only the 5%520

and 1% most frequent action-response-effect patterns are included. A brief analysis of the graph reveals
that it does not allow us to obtain the same insights as the miner proposed in this paper. Most notably, the
process model contains a large number of arcs. Given that our data set contains four action classes, nine
response classes, and five effect classes, the directly-follows graph can potentially contain 81 (9 ∗ 4 + 9 ∗ 5)
arcs. Already a single instance of a particular response-effect pattern for a considered action will result525

in additional arc. The number of arcs increase exponentially with the number of responses observed. A
possible solution to this could be to add information to the control-flow based representation, such as the
observed frequencies of the arcs or nodes.

However, filtering based on the frequencies does not always deliver the desired result. This is also
illustrated in Figure 8. It shows that filtering could even be misleading since the data set is imbalanced.530

In this real-world scenario, a high frequency does not imply a significant pattern. This becomes obvious if
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(a) Physical aggression towards objects (b) Verbal aggression

(c) Self-injurious behavior

(d) Physical aggression towards people

Figure 7: Graphical representation of applying the ARE miner on the action-response-effect log for three initial actions.

we compare the techniques. From the figures we can see that none of the significant response-effect pairs
from Figure 7a are displayed in Figure 8a. In addition, for the most complex action, only one pattern (PP
- Distract client - tau/τ) of response-effect can be observed in Figure 8b.

In order to understand the relations in the representation, we have to account for the relative frequencies.535

These reveal the meaningful insights that are hidden in the representation of a discovery technique such as
the directly-follows approach. Hence, even after applying filtering mechanisms, Figure 8 does not provide
the necessary insights. For example, even though we can observe a pattern for the action Physical aggression
towards people (PP) in both our graph and the directly-follows graph, we cannot determine the meaning
of the arc in the latter. We cannot assess whether the frequency that is displayed on the arc (22) is a540

statistically relevant effect. Hence, the directly-follows graph does not provide the insights that are required
to answer question such as: If a client displays aggressive behavior of class X, which response is likely to
lead to an (de-)escalation or future aggression? If we consider the same pattern again for the action PP, we
can see in our graphical representation that we show that the response Distract client leads to significantly
fewer instances of Tau. This means that this particular response to the considered action seems to escalate545

violence, after all the chance of no next incident occurring is lower than we would expect based on statistics.
The qualitative evaluation in this section using a real-world data set strongly suggests that the represen-

tations generated by the ARE miner allow to obtain relevant domain-specific insights that can be directly
translated into practical guidance.

6. Discussion550

In this section, we discuss the implications as well as the limitations of the work presented in this paper.

Implications. The key question identified at the start of this research addressed the desire to express insights
into how a response to an action can lead to a desired or undesired outcome (effect). In our problem
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Action: Physical 
aggression towards 
objects

Effect: Physical 
aggression towards 
objects

Missing data

Response: None

Effect: Physical 
aggression towards 
people

Effect: Verbal 
aggression

Response: talk to 
client & terminate 
contact

Response: 
talk to client

Effect: self-
injurious 
behavior

(a) Physical aggression towards objects

Action: Physical 
aggression towards 
people

Response: talk to 
client & distract 
client

Response: talk to 
client & terminate 
contact

Response: 
terminate contact

Missing data

Effect: Physical 
aggression 
towards people

Response: 
talk to client

Effect: Verbal 
aggression

Effect: Tau

(b) Physical aggression towards people

Figure 8: Directly-follows process model of the real-world event log for the initial action physical aggression against objects
(PO) and physical aggression towards people (PP). This shows the process filtered on 5% of the possible activities and paths
for the initial action PO and 1% of the possible activities and paths for the initial action PP. The models were created using
Disco 3.

statement we identified two main challenges associated with this that need to be overcome: (1) graphical
representation, and (2) effective filtering mechanism. Our evaluation uses an artificial log covering a broad555

range of scenarios that highlights how the proposed ARE miner addresses both these challenges. In addition,
we evaluate the ARE miner a real-world data set from the healthcare domain. Figure 7 shows that the ARE
miner creates a simple graphical representation that allows for insights into statistical relations that cannot
be obtained using Figure 8. In addition, we show that the use of statistics substantially reduces the number
of arcs in comparison to a naive DFG-based approach. The filtering mechanism is also effective in the sense560

that it filters those arcs that are meaningful, opposed to those that are merely frequent.
One interesting implication of the ARE miner generated insights can be used to support decision-making

processes. In our example, Figure 7 can be used to train existing and new staff members to ensure that
appropriate responses are taken. For example, one could show that responding with Seclusion will likely
escalate future violent behavior of the client. Placing the ARE miner in a broader medical context, it could565

help make informed decisions when different treatment options are considered. In a different domain, the
ARE miner could help a marketing organization understand the effectiveness of marketing strategies in
terms of response of potential customers. In short, the ARE miner provides insights into action-response-
effect patterns where the objective of analyzing the process is to understand possible underlying statistical
dependency patterns.570

Limitations. The work presented in this paper is subject to a number of limitations, which relate to the
ARE miner itself as well as the experimental evaluation.

As for the ARE miner, there are three main limitations. First, we assume the independence of the
responses. This means that each response has a unique impact on the effect and there is no interaction effect
when responses are combined. For example, if response r1 is observed to lead to effect c1 and response r2 is575

observed to lead to effect c2, then only these independent patterns will be included even if the combination
of r1 and r2 actually leads to c3. Adjusting for this, would require a new formalization and introduce
considerable additional complexity since the set of responses would be no longer R, but R×R. Second, our
formalization defines an effect as the next occurrence of an action after the response. In certain scenarios, it
could be very interesting to consider the generalize this formalization by allowing the effect to be any type580

of event or activity. However, with such a generalization we can no longer compare the ARE miner with
a directly-follows graph. As such, such a fundamental adjustment requires an entirely different means of
comparison, which is left for future research. Third, we need to consider the data requirements of the ARE
miner. The scenario in which the ARE miner is mostly applicable is when there is a choice to be made in
the process. Hence, a form of categorical data needs to be available. In addition, the ARE miner does not585

allow for continuous variables to be included. However, continuous variables can often be transformed to
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categorical variables.
The main limitation that needs to be considered for the experimental evaluation concerns the parameter

settings for the artificial data. There are a variety of parameter settings that could be further explored. For
example, changing the value of δ in the PMF generation phase from 0.2 to 0.1 would generate more precise590

insights into the mechanisms underlying the techniques. In addition, varying the number of responses
and effects may lead to further interesting insights. There are two main reason why we did not address
these limitations in this paper. First, the adaptation of these parameters cannot be expected to provide
fundamentally different insights since they will mainly affect granularity and size of the data. Second, the
experiments for the presented setting already required substantial computing power. Therefore, we decided595

to stick to the chosen setting.
A limitation that is more of secondary nature is the variety of ways in which the frequency filter for

the DFG-based approach can be implemented. Most filters aim to capture one of two key elements of the
DFG-based approach: time or activities/paths. The ARE miner focuses on the filtering of activities (nodes)
and paths (edges). Time, in the ARE miner, is represented via the definition of ε and thus represents a600

constant. Therefore, filtering based on the frequency of paths provides results that are best suitable for
comparison.

7. Related Work

Over the last two decades a plethora of process discovery techniques have been proposed [15]. The
majority of these approaches generate procedural models such as Petri nets [16, 17], causal nets [18, 19],605

BPMN models [20, 21] or process trees [22, 7]. Some techniques also discover declarative models [23, 24] or
hybrid models (i.e. a combination of procedural and declarative models) [25, 26]. What all these techniques
have in common is that they aim to discover the control flow of a business process, that is, the execution
constraints among the process’ activities. The ARE miner clearly differs from these traditional process
discovery techniques by focusing on action-response-effect patterns instead of the general control flow.610

There are, however, also alternative approaches to process discovery. We distinguish two prominent
classes of techniques: artifact-centric process discovery and causal mechanism discovery. Several authors
addressed the problem of artifact-centric process discovery [27, 28, 29]. The core idea of artifact-centric
process discovery is to consider a process as a set of interacting artifacts that evolve throughout process
execution. The goal of artifact-centric discovery, therefore, is to discover the lifecyles associated with these615

artifacts and the respective interactions among them. While artifact-centric discovery techniques move
away from solely considering the control-flow of the process activities, the main goal is still control-flow
oriented. A related technique to process discovery was proposed in [30, 31]. This technique focuses on the
different perspectives of a process and discovers and captures how their relations change using composite
state machines. While the techniques from [30, 31] are potentially useful in many scenarios we address with620

the ARE miner, the insights that can be obtained with the ARE miner differ substantially. The techniques
from [30, 31] allows to understand how different artifact life cycle states are related. For example, it reveals
that a patient in the state “Healthy” does no longer require a “Lab test”. The goal of the ARE miner is to
show what actually needs to be done (or should not be done) to make sure a patient ends up in the state
“Healthy”.625

The second, prominent set of discovery techniques study the phenomenon of causality in process mining
[32, 33]. In [32], the authors investigate how a treatment can have a (high) causal outcome for certain
subgroups of cases. In their work, they propose an action-rule based technique in which uplift trees are
used to determine the subgroups for which the causal relations are relevant. In [33], the authors rather look
at the context in which the process takes place and run a Dynamic Bayesian Network model to determine630

causal relations. When we compare the ARE miner to previous work, we see that there are three main
differences: (1) the definition of subgroups, (2) the transparency of the technique, and (3) comprehensibility
of the output. We discuss each of these differences in detail below.

First, the techniques differ in the way subgroups are defined. One strand of literature, the rule-based
approaches and related works, allow for the discovery of subgroups based on data. The main advantage of635
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the data discovery is that new subgroups can be discovered. By contrast, other techniques take subgroups
that are defined by the user as an input. The main advantage of the user-defined subgroups is that the
subgroups intuitively make sense to the user of the approach. Therefore, the results of this user-defined
approach provides results that are inherently meaningful and actionable to the user.

Second, the transparency of these techniques differs greatly. Previous research has shown that this plays640

a crucial role in the acceptance of and trust in new techniques. In [34], the authors showed the crucial
importance of understanding how a prediction is made for people in the medical domain in order to come
to a decision about a patient’s treatment. In [35], the authors expand on this by showing the same holds
for other business domains. The main advantage that the machine learning-based techniques have is that
they are very powerful and can result in highly accurate results. However, the transparency of the process645

of obtaining the results is a known dilemma in machine learning techniques [36]. As a result, the movement
of explainable artificial intelligence prescribes that retrospectively additional models can be built to gain
insights into this process. According to [37], we can distinguish two counteractions to this: explainable by
design or explainable post-hoc. The latter is used in the works of both [32] (uplift trees) and [33] (sensitivity
analysis). Using a statistical approach, like we do in this paper, the transparency of the technique is650

provided by design. All outcomes of the technique are traceable and can be recalculated manually. The
main advantage of this is that the ARE miner is intrinsically transparent and thus ensures insights into
to why and where questions, e.g., why do certain (causal) relations hold and where they do these relations
origin?

Lastly, the output of the approaches differs substantially. For rule-based approaches the output is655

declarative in the sense that a set of textual rules are defined to which a case should hold in order to optimize
the effect. In addition, in [33], the authors provide the user with probabilistic parameters as output variables.
The ARE miner also produces probabilistic parameters, but not as output. The ARE miner builds on the
parameters by introducing an extra translation of the results into graphical representations with effect size
indications. In this way, we provide the user with an understandable and actionable representation.660

To the best of our knowledge, we are the first to propose a technique, the ARE miner, that discovers
action-response-effect patterns and allows the reader to develop an understanding of why certain events
occur. The ARE miner creates this understanding by having user-defined subgroups, which are used in a
transparent technique to produce probabilistic visual output that is intuitive for the user.

8. Conclusions665

This paper presented the ARE miner to discover action-response-effect patterns within work processes.
We identified two main challenges that we addressed in this research: (1) comprehensible graphical repre-
sentation, and (2) effective filtering mechanism. In order to address these challenges, we proposed the ARE
miner that builds on filtering influential relations using statistical tests. We evaluated the ARE miner in
two ways. First, we used an artificial data set to compare the performance of the ARE miner to traditional670

process-oriented representations. The results show that the ARE miner leads to both: (1) a reduction in
the number of arcs drawn, and (2) a set of arcs that is different and more meaningful compared to the
DFG-based approaches. Second, we evaluated the ARE miner on a real-world data set from the healthcare
domain. More specifically, we used the ARE miner to study aggressive behavior and show that we can gain
valuable and novel insights from the representations discovered by the ARE miner. The representations675

show that the ARE miner can tackle both challenges by providing an easy-to-interpret representation that
only displays meaningful relations such that it highlights informative insights.

In future work, we plan undertake a number of steps to extend this work. In line with the limitations
we presented previously on the ARE miner, we plan to conceptually extend this work by 1) developing an
extension to the ARE miner that can estimate and incorporate the interaction effect that can arise when680

there are multiple responses to an action and 2) revisiting the concept of effects to see if we can relax the
formalization to allow for different types of effects other than the next action of a process. Besides these
conceptual extensions, we also plan to conduct additional evaluations. Most importantly, we intend to
further test the ARE miner on additional real-world cases. What is more, we plan to compare the results of
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the ARE miner to machine learning-based approaches. In this way, we can obtain further insights into the685

applicability and the value of the ARE miner.
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