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Abstract

Processes in healthcare are complex and
data-intensive. Process mining uses data recorded
during process execution to obtain an understanding of
the actual execution of a process. Due to the complexity
of healthcare processes, it is useful to consider and
analyse the process execution of certain cohorts, such as
old and young patients, separately. While such analysis
is facilitated by process variant analysis techniques,
existing approaches for process variant analysis only
consider a comparison based on the control flow and
performance perspectives. Given the large amount of
event data attributes available in healthcare settings,
we propose the first data-based process variant analysis
approach. Our approach allows comparing process
variants based on differences in event data attributes by
building on statistical tests. We applied our approach on
the MIMIC-IV real-world data set on hospitalizations
in the US, where we demonstrate that the approach
is feasible and can actually provide relevant medical
insights.

1. Introduction

Health insurance companies, governments, and
healthcare reforms put more and more pressure
on hospitals to work as efficiently as possible
as a constant care demand increment is taking
place [Mans et al., 2008]. Over the past years,
healthcare organizations have shifted their focus
on ways to streamline their processes to deliver
high-quality care while reducing costs at the same
time [Anyanwu et al., 2003]. Processes in healthcare
are highly complex and distributed across many
disciplines. Thus, it is often unknown what exactly
happens in a treatment process for a group of patients,
which in the medical domain is called a patient
cohort [Mans et al., 2008].

A promising way to obtain insights into treatment
processes is the use of process mining. Process

mining provides a set of techniques that aim to
understand the actual execution of processes. It builds
on data extracted from information systems, so-called
event logs, that has been recorded in the context of
the process execution and, therefore, reflects what
really happened. Among others, process mining can
be used to discover a visual representation of the
process, detect conformance issues, or predict process
outcomes [van der Aalst, 2016]. By building on event
logs extracted from health information systems, process
mining can also be used to analyse treatment processes
of patients.

One aspect that is particularly relevant in the
context of analysing treatment processes is to compare
different patient cohorts, such as young and old
patients. A comparison of different subsets of an event
log that differ with respect to certain characteristics
is generally referred to as process variant analysis
[Taymouri et al., 2021]. In principle, process variant
analysis can enable health experts to understand how
the process execution of different cohorts differ and,
in this way, identify specific improvement opportunities
for one or more considered cohorts [Rojas et al., 2016].

However, existing techniques for process variant
analysis in the context of healthcare processes
are limited to the control flow and performance
dimension [Rojas et al., 2016, Taymouri et al., 2021].
This means that event data attributes, such as laboratory
measurements, are not considered for the analysis.
This is rather surprising given that such event data
attributes can differ considerably among patient cohorts.
For example, hypertension, which is characterized by
increased blood pressure, is more prevalent in older
patients [Lloyd-Jones et al., 2005]. Thus, the activity of
measuring blood pressure in process executions relating
to older patients will likely result in a higher blood
pressure measurements. With that information at hand,
medical experts can understand patient cohorts better,
allowing them to derive cohort specific and process
oriented treatment insights based on data.

Due to the lack of event data attribute comparison



in process variant analysis, such differences are not
yet possible to identify. Thus, potentially important
differences in patient cohorts cannot be detected. In this
paper, we therefore propose an approach for data-based
process variant analysis, which enables further insights
into process variants by taking event data attributes from
the event logs explicitly into account.

The remainder of this work is organized as follows.
Section 2 shows an overview of related work and
Section 3 illustrates an example describing the problem.
In Section 4, we present our approach for data-based
process variant analysis. With the help of an interactive
graphical tool, we evaluate our approach on the
MIMIC-IV real-world data set on hospitalizations in
Section 5. We discuss the approach and its limitations
in Section 6 before we conclude by discussing future
research in Section 7.

2. Related Work

The analysis of process variants has been approached
from different perspectives in the literature. The survey
conducted in [Taymouri et al., 2021] shows, that process
variant analysis is a cluttered field. Approaches for
process variant analysis can be characterized by four
factors: the required input data, the provided output,
the type of analysis conducted, and the algorithms used.
From the perspective of the type of analysis conducted,
three categories can be distinguished.

Approaches from the first category look at
process variants from a control flow perspective
[Buijs et al., 2012, Swinnen et al., 2012]. This
enables analysts to see how process variants
differ with respect to the performed activities
and the execution order. Approaches from the
second category take performance data into account
[Cuzzocrea et al., 2017, Gulden, 2017]. This allows
for a more detailed analysis, where execution times
of activities and other time-related measures are
compared. Approaches from the third category
consider data, which can be activity data or resource
information [Low et al., 2017, Nguyen et al., 2018].
This is interesting for event logs containing event data
attributes that can be leveraged for a more detailed
comparison.

In this paper, we focus on the third category
and propose a novel approach for data-based process
variant analysis. While there already exist some
approaches belonging to this category [Low et al., 2017,
Nguyen et al., 2018], these approaches do not consider
additional information from event data attributes. The
approach proposed in [Low et al., 2017] uses data on
resources to visualize information on resource allocation

and activity scheduling. While the primary goal of
this work is not process variant analysis but business
process improvement, it is related due to the focus on
resource data and the overall goal of providing insights
for the purpose of process improvement. The approach
from [Nguyen et al., 2018] uses event data attributes and
statistical tests for investigating process variants. They
propose perspective graphs as a multi-perspective view
on process variants. Perspective graphs represent any
entity referring to an attribute of the event log, where the
connecting arcs represent an arbitrary relation between
the nodes. Two perspective graphs are compared
by generating a comparison graph, where statistic
significant differences in frequency are represented in
a matrix. The application of this approach focuses
on categorical event data attributes. Their approach
allows the comparison of detailed value changes, such
that a handover from one country to another country is
performed more frequently.

To summarize, existing approaches for process
variant analysis hardly consider event data attributes.
The recent review in [Taymouri et al., 2021] even
explicitly identifies data- and resource-aware process
variant analysis as a research gap, as existing work in the
field has focused on control flow and performance data.
Against this background, we propose an approach that
takes differences in event data attributes associated with
activities between process variants into account. By
considering categorical as well as continuous event data
attributes, our approach provides the required flexibility
to obtain detailed insights into the differences between
process variants.

In the next section, we take a look at the specific
challenges that we need to tackle to accomplish this.

3. Problem Statement

To illustrate the problem of analysing process
variants based on event data attributes, consider the
event log depicted in Table 1. It shows three different
cases related to three different individuals. We can
see that the execution sequences of the activities are
perfectly identical (i.e. A, B, C). However, the cases
strongly differ with respect to the event data attributes.
The individuals involved in the cases are of different
age, have different heart rate ranges, and experienced
different levels of pain.

From a medical perspective, the challenge is now to
identify process variants that relate to potential patient
cohorts. In practice, there might be numerous data
attributes and, therefore, also numerous options to split
the log based on available attributes. One possible split
is depicted in Table 2 and Table 3 where the event log



Table 1. Example event log enriched with event

data attributes.
Case Age Activity Heart Rate Pain

0 20y A 67 low
B 66 low
C - low

1 80y A 103 high
B 100 medium
C 90 low

2 23y A 56 medium
B 58 medium
C 62 low

is split based on the case attribute age into younger (≤
60y) and older (> 60y) patients.

Table 2. Event log split by subject age, including

younger patients.
Case Age Activity Heart Rate Pain

0 20y A 67 low
B 66 low
C - low

2 23y A 56 medium
B 58 medium
C 62 low

Table 3. Event log split by subject age, including

older patients.
Case Age Activity Heart Rate Pain

1 80y A 103 high
B 100 medium
C 90 low

This paper tackles the problem that there is no
approach available that allows to make statements
regarding the actual value differences in process
variants. As a result, we cannot answer whether heart
rate or pain in older patients undergoing an activity is
higher than in younger patients undergoing the same
activity. This information is highly useful in healthcare,
as it enables to make cohort specific and process
oriented statements. For example, it could be identified,
that younger patients are less likely to experience pain at
the beginning of the process in activity A, which could
represent triage in the emergency department. Thinking
this further, this information could also improve the
process by prioritizing older patients in the beginning
of the process, as they are expected to experience more
pain.

Another problem under investigation is that the
changing behaviour of event data attributes cannot be

compared yet. For example, we cannot say, whether
the pain level or heart rate is changing throughout the
process. It could be, that at some point in the process,
these measurements increase for younger patients and
decrease for older patients. In healthcare, this could
happen due to different treatments for younger and older
patients.

In the next section, we present our approach to
identify differences in event data attributes for process
variants.

4. Approach for Data-based Process
Variant Analysis

Split
Event Log

Estimate
Data Types

Process
Loops

Activity Data
Variant Comparison

Data Flow
Variant Comparison

Figure 1. Overview of Proposed Approach

In this section, we introduce our approach for
data-based process variant analysis. Figure 1 provides
an overview of the proposed approach. It consists of
five main steps. The first step is to split the event log
into possible process variants. This split is expected to
be done manually, for example, based on specific case
or event data attributes. Then, we determine the data
types of the event data attributes. This is important
since categorical and continuous event data attributes
need to be handled differently. Next, we pre-process the
loops in the variants. This is important since loops may
lead to repeated occurrences of activities and, therefore,
also in event data attribute changes. Finally, we analyse
the variants. We provide two specific mechanisms for
this. Using the activity data variant comparison, we
can identify differences between variants in terms of
collected data values from activities. Using the data flow
variant comparison, we can identify differences based
on the changing flow of data values among activities. In
the subsequent sections, we explain these steps in more
detail.

4.1. Estimate Data Types

Our approach aims to compare the event data
attributes of two process variants. From a mathematical
point of view, these attributes can be either continuous
or categorical variables. In Table 1, we observe
two common measurements. Pain is a measurement
describing how much pain the patient feels at the
moment. It is a categorical value that can have the



values low, medium, or high. Heart rate, by contrast,
is a continuous variable.

For our analysis, we need to differentiate between
these two data types because they require different
statistical tests. The separation in one of the two groups
depends on the investigated data set. In statistics,
it is often assumed that the statistical data types of
variables are known. But in event logs retrieved from
healthcare data, not all measurements might be well
documented. Tagging event logs containing many
measurements would require a lot of manual processing.

As shown by [Valera and Ghahramani, 2017,
Cremerius and Weske, 2022], we can apply simple
logic rules to distinguish between categorical and
continuous variables. Thus, we apply a check that
divides the number of distinct values by the total
number of values and compares this fraction against a
user-defined threshold. For example, if all values of an
event data attribute are unique, the resulting fraction is
1, indicating a continuous attribute. If 4 of 100 values
are unique, the resulting fraction is 0.04, which is likely
to be categorical. It should be noted, that this can result
in wrong classifications, depending on the threshold.
Therefore, we see this as an automated guidance to
identify the data types, where the user can change the
threshold or edit the data type of single variables.

We perform the classification for the XES data types
String, Date, Float, and Integer. We only consider String
if all values of the variable contain numbers encoded as
a string. If not, we consider it is as categorical. The data
type Boolean is always categorical [XES, 2016].

4.2. Process Loops

Processes can contain loops, which means that
within a single process execution one activity or
transition occurs several times. Transitions considered
are directly follows and eventually follows relations. As
we compare activities and transitions in both variants,
we need to define how to cope with loops.

If we do not require a fine-grained comparison
of each occurrence of the activities, we can process
each case by aggregating the values collected for each
occurrence of one activity or transition. For example, we
can calculate the mean, mode, minimum or maximum
per case activity or transition. With this approach,
however, we do not consider at what point in time an
activity or transition happens within a trace.

If we require a fine-grained comparison, we propose
to enumerate activities and transitions for both types of
analysis. For example, the trace < A,B,A,C,A,B >
would become < A1, B1, A2, C1, A3, B2 > for activity
comparison. For data-flow comparison, we enumerate

each transition, resulting in (A,B)1, (A,B)2, (A,C)1,
(B,A)1, (C,A)1 for directly follows relations. One
can further differentiate between the occurrence of
directly follows and eventually follows relations, which
is dependent on the type of analysis.

4.3. Statistical Tests

To enable data-based process variant analysis, we
require a measure of difference between two process
variants. We need to quantify whether two samples
differ on a significant level.

To accomplish this, we use statistical tests. They
allow us to measure whether process variants differ
with respect to their event data attributes and provide
a measure of how two or multiple different populations
behave. Choosing the statistical test depends on the data
type, the distribution of the data, and the dependency
between the samples [Parab and Bhalerao, 2010]. As
described in Section 4.1, we differentiate between
continuous and categorical variables. As we cannot
make any assumptions about the distribution of the data,
we need to employ so-called non-parametric tests. As
for the sample comparison, we compare samples drawn
from independent process variants, which means that we
consider an unpaired sample setting.

For continuous data, we use the Mann-Whitney U
test. It is a non-parametric test, which considers two
samples that are independent of each other. The test
results in a p-value, which describes how statistically
independent both samples are. If the p-value is
below a certain threshold, the difference between the
samples is concluded to be statistically significant.
Furthermore, we calculate the Rank-biserial correlation
(RBC) between both samples. The RBC value is
between -1 and 1, where high absolute numbers mean
strong correlation, and therefore a strong difference
between both samples [Mann and Whitney, 1947]. For
example, if the RBC value is -1, all values in the second
sample are lower than the values in the first sample.
Thus, the RBC value expresses whether the values in
one sample are higher or lower than in the other sample.

For categorical data, we use the Pearson Chi-Square
Independence test. It evaluates if the given samples
are independent by comparing the frequencies of each
categorical variable present in both samples. The
test results in a p-value. A small p-value shows
the independence of both samples and, therefore, a
difference in their distributions. Similar to the RBC
value for the Mann-Whitney U test, the chi-square
value indicates how much difference exists between
both samples. Thus, the higher the chi-square value, the
higher the difference in the categories [McHugh, 2013].



As described above, each statistical test results in
a p-value indicating the statistical significance and a
test-statistic indicating the degree of the difference. To
evaluate whether both samples differ in a statistically
significant way, we need to define a p-value threshold α,
which is typically 0.05. Technically, statistical tests can
be conducted on any sample size. However, to retrieve
meaningful results, the sample size should be considered
when interpreting the test results.

If multiple tests are conducted for the same samples,
which happens if multiple event data attributes exist, α
needs to be adjusted according to the number of tests
performed. For this, we use the Bonferroni correction,
which determines the p-value threshold α for statistical
significance [Armstrong, 2014]. For example, if 10 tests
are conducted on the same samples, α needs to be
divided by 10, resulting in α = 0.05

10 .

4.4. Activity Data Variant Comparison

Activity data variant comparison provides insights
into whether a specific event data attribute (such as heart
rate) differs between the two variants for a particular
activity. Table 4 and Table 5 show the split of the event
log by age, where variant 1 contains cases of young
patients and variant 2 contains cases of old patients.
Assume we would like to compare Activity A and
consider the measurements heart rate and pain. Note that
we, in comparison to Table 1, added additional cases to
reach a sufficient sample size, which needs to be at least
four for both variants to technically reach a statistical
significant p-value.

In the example, we see that the heart rate of younger
patients seems to be lower than the heart rate of older
patients. Thus, laboratory values or other measurements
collected from patients during their treatment process
could exhibit statistical significant differences in
different variants. Having that information, one could
provide more precise process-oriented statements about
different patient groups, such that older patients have
a higher heart rate in the intensive care unit or during
a procedure, instead of saying that this is the case in
general.

To compare variant 1 and variant 2, we now pick
all values for one measurement, such as the heart
rate, and create two samples that can be compared.
Based on the two samples for one laboratory value for
variant 1 and variant 2, we then perform a statistical
test between the two collected samples. As explained
before, for continuous data, a Man-Whitney-U-Test is
used, while for categorical data, a Chi-squared test is
applied. Both tests result in a p-value and a second,
test-specific measurement. The p-value shows, whether

the measurement differs significantly between both
variants.

In our example, the heart rate differs between variant
1 and variant 2, as the older patients have a considerably
higher heart rate. Looking at Table 4 and Table 5, we
have the values 56, 67, 45, 40 for variant 1 and 103, 100,
100, 102 for variant 2 as input for the statistical test.
The resulting p-value is 0.0294 with an RBC value of
1.0, as all values are higher in variant 2. Therefore, we
observe a difference in the heart rate values in the two
process variants, which can be justified with statistical
significance.

Afterwards, we only pick the measurements that
show a statistically significant difference between both
variants.

Table 4. Input for Activity Data Variant Comparison

of Activity A for Variant 1.
Case Age Activity Heart Rate Pain

0 20y A 67 low
2 23y A 56 medium
3 25y A 45 medium
4 30y A 40 high

Table 5. Input for Activity Data Variant Comparison

of Activity A for Variant 2.
Case Age Activity Heart Rate Pain

1 80y A 103 high
5 85y A 100 high
6 90y A 100 high
7 82y A 102 high

We propose this procedure for each activity with its
respective event data attributes. In our example, we
would do the same for the pain value for activity A
and then with both measurements for activities B and
C. Therefore, all values for the activity considered are
collected per variant from all cases. This requires a
case to contain the activity and the respective event data
attribute under investigation. If loops are included, we
provide different methods to deal with them, which are
explained in Section 4.2.

4.5. Data Flow Variant Comparison

Besides activity data comparison, we also consider
the behaviour of event data attributes and compare the
transitions present in both process variants. The data
shown in Table 1 contains a transition from activity A
to activity B for all cases. We want to understand if
the changes in measurements from activity A to activity
B are statistically significant between variant 1 and



variant 2. This is especially interesting in the context
of healthcare data, as it could show how treatments for
different patient groups affect patients’ measurements
and, thus, the patients’ wellbeing. This could help to
compare and evaluate different treatment options for
different patient groups.

In Table 6 and Table 7, we see a visualization of the
transitions from A to B present in the data. We compute
the change in measurements from activity A to activity
B. This is possible for the continuous variable heart
rate by calculating the difference. While continuous
data, such as heart rate, allows simple subtractions of
its values, categorical data requires different processing:
the categorical value of the start and the ending activity
is merged into a new categorical value. For the pain
value, the transition from high to medium for Case 1
results in “high-medium”.

We again collect all changes for one transition, such
as the transition from A to B for one measurement, such
as the heart rate. This is done for both activities to result
in two samples that can be compared regarding their
difference. We perform a statistical test on both samples
to measure if there is a difference between variant 1
and variant 2. Here, heart rate for variant 2 decreases,
whereas it mostly increases for variant 1. As illustrated
in Table 6 and Table 7, the heart rate in variant 1 is
almost only increasing with ∆ values -1, 2, 3, 4 and
in variant 2 decreasing with ∆ values -3, -2, -5, -4, the
resulting p-value would be 0.0285 with an RBC value
of −1. Thus, the difference is statistically significant
and the RBC value indicates that the changing values in
variant 2 are all lower than in variant 1.

Table 6. Input for Data Flow Variant Comparison of

Transition A → B for Variant 1.

Case Age Transition
∆ Heart

Rate ∆ Pain

0 20y A → B -1 low → low
2 23y A → B +2 medium → medium
3 25y A → B +4 medium → high
4 30y A → B +3 high → high

Table 7. Input for Data Flow Variant Comparison of

Transition A → B for Variant 2.

Case Age Transition
∆ Heart

Rate ∆ Pain

1 80y A → B -3 high → medium
5 85y A → B -2 high → medium
6 90y A → B -5 high → medium
7 82y A → B -4 high → medium

As explained in Section 4.3, we perform a
Man-Whitney-U-Test for continuous and a Chi-squared

test for categorical data. We then filter the records based
on their p-value to find those with statistically significant
differences between both variants. This is done for each
event data attribute and for each transition to compare
all possible differences for statistical significance.
Transitions under considerations are all directly follows
and eventually follows relations available in the event
log.

5. Evaluation

To evaluate our approach, we implemented it in
the context of a Python application that provides the
user with an interactive graphical representation. The
overall goal of the evaluation was to demonstrate the
feasibility of the proposed approach. To this end, we
applied it on data of patients with acute kidney failure
from the MIMIC IV dataset and show which insights
on age-related data-based differences between patients
can be obtained by using our approach. In the following
sections, we elaborate on the details of our evaluation.
We start by introducing the MIMIC IV dataset (Section
5.1) and the tool-based implementation (Section 5.2).
Section 5.3 briefly elaborates on the split into variants
before Section 5.4 reports on the results.

5.1. MIMIC IV Dataset

The MIMIC IV dataset is a medical dataset
consisting of anonymized data of more than 40,000
patients. The data is retrospectively collected with
the purpose to support research in healthcare. MIMIC
IV contains a plethora of health measurements, such
as blood pressure, heart rate, and laboratory values.
Furthermore, it is enriched with context information of
each patient, such as the type of health insurance, age,
and many more.

The event log covers each step of the patient
within the hospital, starting in the emergency
department up to the patient’s discharge. For
some numerical measurements, like laboratory
measurements, enriched categorical information is
available. This enriched information can describe if a
laboratory measurement is abnormally high, normal, or
abnormally low, and is evaluated based on the individual
patient data. For example, besides the numerical
measurement of the phosphate value, there is also
the categorical measurement “Abnormal Phosphate”
present [Johnson et al., 2021, Goldberger et al., 2000].

Within MIMIC IV, there are several disease types
available. Here, we focus on acute kidney failure
patients because its disease progression can be measured
by kidney specific laboratory measurements. We
extracted an event log containing data of patients with



acute kidney failure. For the analysis in this paper, we
limited the event log activities to the five most common.
The full event log is available in our implementation1.

The considered activities are Emergency
Department, where the patient enters the hospital
and undergoes triage with basic measurements, such
as blood pressure. Afterwards, patients either undergo
surgery in the Surgical Intensive Care Unit (ICU) or
get their treatment in the Medical ICU. The Post-ICU
Medicine department functions as a step after ICU
treatments, and the last step, Discharge, describes the
activity of letting patients leave the hospital.

5.2. Interactive Data-Based Process
Comparator

We implemented our approach as a Python
application named Data-Based Process Comparator
(DPC). This application allows analysing data-based
variant differences between two event logs. The
application is designed to be used in Jupyter Labs2

and makes use of ipywidgets3 for interactivity inside
notebooks.

The default workflow starts with an event log. This
event log can be manually split by the user into two
variants. These variants are passed into the DPC which
can then compute all relevant information. For a more
advanced experience, DPC also comes with a visual
tool that enables the user to quickly identify interesting
characteristics of the two variants in respect to data
values.

Figure 2. Visual Comparison example with the

Data-Based Process Comparator.

The interactive tool is shown in Figure 2. It consists
of a measurements section and a graph view. In the

1https://github.com/bptlab/
data-based-process-variant-analysis

2https://github.com/jupyterlab/jupyterlab
3https://github.com/jupyter-widgets/

ipywidgets

measurements section, one can select the measurements
to be compared. At first, it can be switched between
continuous and categorical measurements, and then
specific measurements can be included or excluded by
selecting or deselecting them. The graph view shows
a Directly Follows Graph of the joined event logs
of both variants. Each activity and each transition
is coloured according to the highest RBC/Chi2 (test
statistic) value, indicating the degree of difference
between both variants. This means that the darker an
activity is displayed, the higher the difference between
the variants for at least one selected measurement. The
same applies to transitions.

If the user wants to gain more information about
the reason for the different colours, the activities and
the transitions can be clicked, as shown in Figure 3.
Then, an overview is displayed. It contains a list of
all statistically significant measurements for this activity
or transition, as well as the concrete results from the
statistical tests. For example, Figure 3 illustrates the
results when clicking on the Emergency Department
activity, where statistical significant differences in heart
rate and diastolic blood pressure (dbp) were identified.
Furthermore, plots are generated, that help the user to
understand the data distribution in both variants.

These plots will be further explained in the next
paragraphs.

Figure 3. Comparison of Emergency Department

values in Data-Based Process Comparator.

5.3. Variant Split

As mentioned above, the variant split for the
proposed data-based process variant analysis is
arbitrary. For the evaluation, we decided for an
important factor in health care: the patients’ age. The
used split criterion is an age of above 60 years as variant
1 and an age smaller or equal to 60 years as variant 2.
The age criteria of 60 years is a common risk factor in
healthcare, which is the reason why we have chosen
it [Setiati et al., 2020].

https://github.com/bptlab/data-based-process-variant-analysis
https://github.com/bptlab/data-based-process-variant-analysis
https://github.com/jupyterlab/jupyterlab
https://github.com/jupyter-widgets/ipywidgets
https://github.com/jupyter-widgets/ipywidgets


5.4. Comparison Results

In the following, the results of the statistical tests
are demonstrated for one laboratory measurement of
Phosphate, which is associated with acute kidney
failure [Lim et al., 2017]. We want to clarify that there
are further interesting observations, which we cannot
present due to the lack of space. Additionally, we cannot
proof correctness for the test results. However, as the
split is based on age, we can confirm the correctness
of one statistical test, as the test on age was significant
with an RBC value of -1, meaning, that all age values of
younger patients are smaller than for older patients.

Evaluating the results based on the acute kidney
failure dataset with the described split criterion, we see
a dark blue colouring in the Surgical ICU activity, as
shown in Figure 2. This indicates statistically significant
differences between the two variants in this activity.

The Phosphate value is considerably interesting,
with a statistical significance between younger and older
patients, as shown in the graph in Figure 4. On the
y-axis, we see the percentage of all values present for
the value on the x-axis. The x-axis shows the absolute
phosphate value.

The p-value is 3.8 x 10−14 and the RBC value is
−0.26. This means that the Phosphate value distribution
in the Surgical ICU activity differs between younger
and older patients. Younger patients tend to have a
lower Phosphate value compared to the older ones. The
normal Phosphate value of adults is between 2.8 mg/dL
and 4.5 mg/dL.
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Figure 4. Comparison results for Phosphate in the

Surgical ICU Activity.

The described result is also visible when looking at
the categorical Abnormal Phosphate value, where we
observe that young patients more often fall short of
it, whereas old patients exceed the value, as shown in
Figure 5. Comparing both variants, there is a statistical
significance difference with a p-value of 2.29 x 10−15

and a chi2 value of 71.26.
Besides the coloured activities, we observe dark blue

transitions in the graph in Figure 2. We made one
interesting observation in the transition from Surgical
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Figure 5. Comparison results for Abnormal

Phosphate in the Surgical ICU Activity.

ICU to Post-ICU Medicine, where the Phosphate
value behaviour differed between both variants. The
comparison of the Phosphate value behaviour can be
investigated in Figure 6. The x-axis shows the absolute
change from the Surgical ICU Activity to the Post-ICU
Surgery activity of the Phosphate value. On the y-axis,
we see the percentage of all values present for the value
on the x-axis.

For the younger patients, the Phosphate value
increases from Surgical ICU to Post-ICU Medicine for
the majority of patients. Contrary to that, the Phosphate
value of the older patients mostly decreases in the same
transition. We observe a p-value of 1.76 x 10−13 and
an RBC value of 0.54. This is due to the previously
discussed presence of rather low Phosphate values for
younger patients and the rather high Phosphate values
for older patients.
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Figure 6. Comparison results for Phosphate lab

value in the transition from Surgical ICU to Post-ICU

Medicine.

The categorical variable Abnormal Phosphate shows
a statistical significance in the transition from Surgical
ICU to Post-ICU Surgery between the younger and older
patients as well, with a p-value of 5.42 x 10−6 and a chi2
value of 38.77.

We observe a frequent change from abnormal
low Phosphate values to normal Phosphate values for
younger patients (30%), whereas older patients more
often change from abnormal high Phosphate values to
normal Phosphate values (10%). This is visualized in
Figure 7.
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Figure 7. Comparison results for Abnormal

Phosphate lab value in the transition from Surgical

ICU to Post-ICU Medicine.

Table 8. Summary of statistical test results for

phosphate
Analysis Type Data Type Activity/Transition P Test Statistic (RBC/Chi2)

Activity Con. Surgical ICU 3.8 x 10−14 -0.26
Activity Cat. Surgical ICU 2.29 x 10−15 71.26

Data Flow Con. Surgical ICU to Post-ICU Medicine 1.76 x 10−13 0.54
Data Flow Cat. Surgical ICU to Post-ICU Medicine 2.29 x 10−15 38.77

Furthermore, we see different behaviour between
younger and older patients with regard to Phosphate
values. The results of the statistical tests are summarized
in Table 8 displaying the type of analysis with
their respective p-value and test-statistic (RBC/Chi2).
We could confirm already known characteristics
of phosphate values in acute kidney patients, as
a higher age is associated with higher phosphate
values [Rubio-Aliaga, 2020]. Additionally, we could
create new process oriented insights by comparing the
behaviour of phosphate during the hospital treatment
process, where phosphate increased for young patients
and decreased for older patients.

Regarding the transition findings, there is
Hyperphosphatemia, which describes an extensively
high Phosphate value, and Hypophosphatemia,
which describes a low Phosphate value. Both can
be related to acute kidney injury. According to
[Lim et al., 2017], Hypophosphatemia is common
for critically ill patients and related to acute kidney
patients. Hyperphosphatemia needs to be treated by
giving Phosphate lowering medicine, as described
in [Goyal and Jialal, 2021] and occurs together with
acute kidney injury. This could be the reason for our
observation, but has to be further evaluated by medical
experts.

All in all, this evaluation has shown that event
data attributes associated to activities holds additional
information that can be used to derive further
characteristics of process variants.

6. Discussion

Our approach enables data-based process variant
analysis by analysing event data attributes, and thus
enables using more of the available information in
event logs to find distinguishing characteristics between
process variants. Especially in healthcare, a process
oriented, and data-based cohort comparison can be
performed, which allows comparing treatment effects

on different cohorts. However, the results should be
interpreted with caution, as we only observe differences
in data and cannot guarantee that the differences occur
because of the performed activity or transition. We
propose to compare event data attributes based on the
values associated to activities and transitions, which
allows deriving process-oriented insights about event
data attribute behaviour in the process. However, there
exist more perspectives to look at, such as understanding
how event data attributes change over multiple activities
or in specific trace variants. To evaluate, whether there is
a statistically significant difference between transitions,
we need a graph-based representation of the used event
logs. Currently, the developed visual tool only supports
Directly Follows Graphs for this. Typical event logs do
not contain event data attributes for each event. Thus,
one event can contain information about the heart rate
in a medical context, and three activities later, the heart
rate is measured again. Such changes would not be
detected by only considering DFGs. A solution to
this issue is the usage of Eventually Follows Graphs
(EFGs), as they cover more possible transitions that
can be compared for statistically significant differences.
Integrating EFGs, one has to think about how to
visualize and interpret them, as the paths could differ
between the activities. One solution might be to analyse
trace variants separately to cope with the complexity.
Additionally, data flow variant comparison relies on
similar control flow in the variants compared. Our
approach for data-based variant comparison detects
differences between variants by using tests for statistical
significance. This approach works well for detecting
an interesting finding, but is limited in meaningfulness.
Even though there is a significant difference between
two activity or data flow samples, we do not fully
consider the amplitude of difference between variants.
Thus, the p-value in combination with its test-specific
measurement have a limited expression about the data
under consideration. Nevertheless, statistical tests are
broadly accepted in the medical domain, which might
help to communicate results to medical experts. Thus,
we see this approach as a white-box approach, which
is one of the challenges proposed for healthcare process
analytics [Munoz-Gama et al., 2022].

To summarize, our approach adds a data-based
process variant analysis method that can be used across
different domains independently of available data types.

7. Conclusion

In this paper, we presented an approach for
data-based process variant analysis by determining
statistical significant differences between two process



variants. We provide new insights for comparison by
exploiting the increasing amount of data measurements
available in healthcare processes. In this way, we enable
users to analyse and compare two given process variants
in a data-based fashion.

This is the first work in the field of data-based
process variant analysis that considers continuous and
categorical data associated to process activities. An
evaluation of process data of kidney failure patients from
the MIMIC-IV database demonstrated the feasibility
of the approach and already showed interesting results
for age-related differences. The results can help to
make process-oriented statements regarding event data
attribute behaviour during a process, such as comparing
the development of the patient’s state during a hospital
treatment process.

The presented approach can be further enhanced
by supporting loops in the variants and creating a
loop-specific data-based visualization. Furthermore, the
DPC could be extended to plot directly follows and
eventually follows relations. Possible future work also
includes the introduction of a data-based difference
measure for variants. Utilizing this measure, an
automatic selection of interesting variants could be
proposed to allow users to obtain insights that do not
require defining the variant split in the first place.
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